PERRAULT'S SYNDROME: A CLINICAL AND GENETIC INVESTIGATION OF THREE SISTERS

P. Mehdiipour¹, A.R. Karimi² and M.H. Bastanagh³

(1) Department of Human Genetics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
(2) Department of Otolaryngology, Imam Khomeini Medical Centre, Tehran University of Medical Sciences Tehran, Iran
(3) Department of Internal Medicine, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran

Abstract - Perrault's syndrome (P.S.) is rare. The combination of gonadal dysgenesis and hearing loss was accompanied by 46,XX karyotype in three sisters with parental consanguineous marriage. Genetic investigation revealed normal female karyotype, positive Barr and negative fluorescence (F)-bodies, which was confirmed by molecular study on the basis of fluorescence in situ hybridization (FISH), with application of Xcen probe, showing the presence of two signals in 95% of the cells of these 3 Iranian sisters. The pedigree showed parental consanguinity (first cousin) with an autosomal mode of inheritance for both Perrault's syndrome and hearing loss. These findings together with normal thyroid function, serum prolactin, high level of serum gonadotropins is similar to the menopausal period in all 3 sisters. Estrogen and progesterone were recommended for all 3 sisters. This combined therapy led to menstruation and after a few months their breasts were normally developed. For further management cochlear implantation, speech therapy and training courses were suggested in order to improve hearing and intellectual abilities.

Keywords: Perrault's syndrome, genetics, karyotype, fluorescence in situ hybridization (FISH), gonadal dysgenesis, consanguinity, hearing loss

INTRODUCTION

The importance of gonadal dysgenesis prompted Perrault and his colleagues in 1951 to publish the first report on two sisters with and additional sensorineural deafness (1). Further studies and chromosomal investigations revealed normal female karyotype (46,XX) and deaf mutism (2). So far 3 cases with ovarian dysgenesis and sensorineural deafness, having an autosomal recessive mode of inheritance, have been reported (3). A report on the case of two other sisters, presenting with the same pattern of clinical manifestations, including ovarian dysgenesis and sensorineural deafness, has also been published (4). A case of 2 sisters lacking pubertal development and hearing impairment was also reported as an uncommon syndrome in 1985 (5). Other reports in the literature include: (a) the case of 2 Oriental sisters with XX-chromosone complement and bilateral sensorineural hearing loss and (b) the case of 2 Japanese girls, (6, 7, 8). With sensorineural deafness, ovarian dysgenesis and Perrault's syndrome (6, 7, 8), altogether, 24 cases of Perrault's syndrome have been reported in the literature (3, 10, 13) so far.

The purpose of present investigation was to perform genetic investigation, including cytogenetics and molecular cytogenetics (FISH), together with clinical and paraclinical studies in 3 Iranian sisters with gonadal dysgenesis and hearing loss.

MATERIALS AND METHODS

The karyotyping of 3 sisters with Perrault's syndrome was performed on the lymphocytes stimulated with phytohaemagglutinin (PHA) and by adding colchicine. Harvesting was followed by hypotonic treatment and preparation of slides, and staining was carried out on the basis of giemsa banding technique (GTG). The karyogram was prepared according to the chromosome nomenclature (ISCN) (11). The analysis of sex chromatin, including Barr-body and fluorescence
body, was performed on the hair root cells. For performance of fluorescence in situ hybridization (FISH), on peripheral blood the standard protocol was used with biotin-lated DNA-Probes including Xcen (12). Slides were denatured with 70% formamide and dehydrated in 70, 90 and 100% ethanol. Cells were hybridized with probes and incubated. Then slides were rinsed in 50% formamide. Detection and amplification of hybridization signals was performed with Avidin/FITC and goat anti-avidin-antibodies. The chromosomes were stained with Propidiumiodide/DAPI, the slides examined with a fluorescence microscope (Leitz) and the cells were analysed and photographed.

The audiometric examination was performed on both ears with the use of ACS-A 27 and OBA 22-822 Medsen audiometer. The patients were three sisters whose parents and maternal grandparents were first cousins. The patients included a 26 year old girl as the proband and two sisters 20 and 18 years old, their heights being 155, 166 and 166 centimeters respectively (Table 1).

RESULTS

Three sisters, all with primary amenorrhea, lacking secondary sexual manifestations, but with normal height and skeletal system were clinically and genetically investigated (Tables 1-4).

Case 1

Case 1 was the proposita for the Perrault's syndrome in the pedigree; she had hypoplastic uterus, streak and small ovaries, with normal X-ray of sella turcica. Audiometry showed bilateral sensorineural hearing loss (Table 4, Fig 1, 4).

Psychological investigation showed a mild mental retardation with IQ=64 (Table 1). The routine laboratory tests revealed stage zero for the thyroid size, with a normal function. Serum gonadotropin level was found to be 42 and 59.2

Table 1. Clinical finding in 3 sisters with Perrault's syndrome

<table>
<thead>
<tr>
<th>Case No</th>
<th>Age (Yr)</th>
<th>Height (cm)</th>
<th>Ultrasound</th>
<th>X-ray</th>
<th>Type of hearing loss</th>
<th>Status of IQ/mental retardation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>26</td>
<td>155</td>
<td>Normal</td>
<td>Bilateral</td>
<td>10 = 64 Sensoneural</td>
<td>Mild retarded</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>166</td>
<td>Normal</td>
<td>Bilateral</td>
<td>10 = 102 Sensoneural</td>
<td>Normal</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>160</td>
<td>Normal</td>
<td>Bilateral</td>
<td>10 = 74 Sensoneural</td>
<td>Normal</td>
</tr>
</tbody>
</table>

U: uterus; O: ovaries

Table 2. Paraclinical finding in 3 sisters with Perrault's syndrome

<table>
<thead>
<tr>
<th>Case status of</th>
<th>Throid function</th>
<th>Serum – gonadotropin’s level (IU/ml)</th>
<th>Pregestones challenge</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(TERT)</td>
<td>FSH</td>
<td>LH</td>
</tr>
<tr>
<td>1 Stage D</td>
<td>Normal</td>
<td>42</td>
<td>592</td>
</tr>
<tr>
<td>2 Stage IA</td>
<td>Normal</td>
<td>38</td>
<td>64</td>
</tr>
<tr>
<td>3 Stage IA</td>
<td>Normal</td>
<td>54</td>
<td>59</td>
</tr>
</tbody>
</table>

Table 3. Genetics findings in 3 sisters with Perrault's syndrome

<table>
<thead>
<tr>
<th>Case Cyogenetics*</th>
<th>Semi-Bromizion</th>
<th>Psth body</th>
<th>FSH**</th>
<th>Parental Xcen-Prob Consanguinity</th>
<th>Genetic mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Barr-body Fbody</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 46, XX</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>First cousin (2X-signals)</td>
<td>A.R.***</td>
</tr>
<tr>
<td>2 46, XX</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>First cousin</td>
<td>A.R.</td>
</tr>
<tr>
<td>3 46, XX</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>First cousin</td>
<td>A.R.</td>
</tr>
</tbody>
</table>

* Presentative of major cell line; ** Fluorescence in situ hybridization (FISH) with application of X-conosomme – probe (in 30 minutes and 100 interphases for each)

*** Autosomal recessive (A.R.)
Perrault's Syndrome

Table 4. Audiologic, clinical and C.T. Scan findings in 3 sisters with Perrault's syndrome and progressive hearing loss.

<table>
<thead>
<tr>
<th>Case No</th>
<th>Clinical C.T.Scan</th>
<th>Average threshold for the descending type curve</th>
<th>Speech discrimination Score (SDS-test)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>at the first test (1988)</td>
<td>at latest (1997)</td>
<td></td>
</tr>
<tr>
<td>1 Normal</td>
<td>200,500 + 1000 Hz (PTA) in 40-95 dB</td>
<td>200,500 + 1000 Hz (PTA) in 100-110 dB</td>
<td>0%</td>
</tr>
<tr>
<td>2 Normal</td>
<td>200,500 + 1000 Hz (PTA) in 40-95 dB</td>
<td>200,500 + 1000 Hz (PTA) in 90-120 dB</td>
<td>0%</td>
</tr>
<tr>
<td>3 Normal</td>
<td>100,1000 + 2000 Hz (PTA) in 73.3 dB</td>
<td>500,1000 Hz in 70 dB</td>
<td>52% (in best condition) 20% (in the most recent test)</td>
</tr>
</tbody>
</table>

* Presentation of major cell line; ** Fluorescence in situ hybridization (FISH) with application of X-centromere - probe (in 30 meiosis and 100 interphases for each) *** Autosomal recessive (A/R)

Serial, audiologic investigation from 1988 to 1997 showed a descending curve. The onset of progressive hearing loss was from the age of two. Speech discrimination was 0% (Table 4, Fig 4).

Case 2

This case was clinically, paraclinically and genetically, similar to case 1 except that her IQ was 102 and no mental retardation was observed in her (Tables 1-4, Fig 5).

Case 3

Case 3 had a borderline IQ of 74. This case was also clinically, paraclinically and genetically similar to her sisters (Case 1 and 2). However speech discrimination was revealed to be 52% in the best condition and 20% in the most recent test (Table 4, Fig 6).

DISCUSSION

The abnormalities of sexual development could interfere with the patient's life style. Advances in human genetics are changing the physician's approach to such problems. The major aim is to rule out any chromosomal aberrations, which may interrupt sexual development.

![Fig. 1. A karyogram presenting a normal female karyotype (case 1)](image)

(a) Karyogram and the metaphase spread

(b) The metaphase spread

![Fig. 2. Fluorescence in situ hybridization (FISH) with application of X-Cen probe. The arrows demonstrate 2 signals of two X-Chromosomes](image)

80
Fig. 3. Partial pedigree of the 3 sisters with perrault's syndrome.

As the cytogenetic data show (Table 3), the normal female karyotype (46,XX) is confirmed by the results obtained from sex chromatin and FISH studies, positive Barr body, negative F-body and the presence of two signals on X-chromosomes. The pedigree of the patients' family with parental consanguinity was indicative of an autosomal mode of inheritance. However, genetic findings supported the involvement of a single gene as a fundamental disorder with an autosomal recessive (AR) control in the parental genetic make up which could be inherited with a probability of 25% to the offsprings at each gestation.

The pedigree of this family shows that all 3 sisters (Cases 1,2,3) are the offsprings of a consanguineous marriage (first cousin) (Fig 3). The AR-mode of inheritance is in keeping with previous reports (3,4,5,7). The normal situation in all 3 sisters with regard to thyroid function, levels of serum prolactin and the high level of serum gonadotropins was at the same level as that of the menopausal period.

The ovaries of none of the 3 cases responded to gonadotropins, and the ultrasonography was indicative of a hypoplastic uterus and ovarian dysgenesis. This would suggest the existence of a primary failure in all 3 sisters. With administration of progesterone, no success was gained, but the use of combined tablet therapy, composed of estrogen and progesterone, led to menstruation and after a few months the breasts of all 3 sisters developed normally. The audiometric examination, with the follow up study of the impedance was indicative of a normal tympanometry and the absence of acoustic reflex. Speech discrimination was 0.0% in cases 1 and 2.

Although the bilateral sensorineural hearing loss with a descending type curve was found in all 3 sisters (Table 4), a different range of threshold was seen in case 3 with 73.3 dB in the right ear and 70 dB in the left ear at the first hearing test (1988). This was followed by 110 dB in the right ear and 90 dB in the left ear at the last hearing test (1997), with 52% speech discrimination score (SDS) in the best condition and 20% SDS in the last test and the recruitment by stapedial reflex in the left ear.

The patients' parents and one of their brothers did not complain of hearing dysfunction; clinical evaluation and audiometric examination revealed normal patterns in them.

According to the pedigree, the inheritance of hearing disorder could be autosomal recessive as a result of parental consanguinity. Cochlear implantation was suggested for all 3 sisters; speech therapy and specific courses were organized for improving their hearing and intelligence. It is important for such patients and their family members who might be at high risk to consider the following recommendations:

1. To rule out any chromosomal abnormalities, in order to apply a proper therapeutic
Perrault's Syndrome

Fig. 4. Tonal audiometry showing sensorineural hearing loss (case 1)
Fig. 5. Tonal audiometry showing sensorineural hearing loss (case 2)
Fig. 6. Tonal audiometry showing sensorineural hearing loss (case 3)
management and avoid the additive therapy (ies).

2. To achieve a normal life style for patients, both physically and psychologically, by menstruation and phenotypic development especially of the secondary sexual features.

3. Implantation for curing or improvement of hearing disorder.

4. To improve the intelligence and mental abilities by focussing on items 1-3 and also to plan proper, progressive courses, of speech therapy and any other essential courses, including, physical and mental training.

Acknowledgment

The authors are grateful to Prof. Dr. G. Schwanitz, institute of Human Genetics, Bonn for the scientific advising on FISH and also to Dr. A. Djazayeri for editing the manuscript.

REFERENCES

