ADHESION RATES AND CHONDROCYTE PHENOTYPE
IN MONOLAYER CULTURES UNDER THE INFLUENCE
OF COLLAGEN TYPE II AND IGF-I

M. Shakinai
Institute of Anatomy, Freie Universität Berlin, König-Luise-Strasse 18, D-14195 Berlin, Germany

ABSTRACT - When grown in monolayer culture at low density and with the addition of serum, cartilage cells dedifferentiate or are overgrown by fibroblast-like cells. The aim of this study was to optimize the cultivation of chondrocytes in monolayer culture and to slow down their transformation or their overgrowth by fibroblast-like cells. The interaction between chondrocytes and cartilage-specific matrix is mediated largely by the β1 subfamily of integrin receptors. This interaction can be regulated or synergized by growth factors, such as IGF-I, which stimulates many chondrocyte functions.

For this reason isolated chondrocytes of cartilage anlagen from 17-day-old mouse embryos were grown on collagen type II-coated substrates with or without the addition of IGF-I (Insulin Like Growth Factor-I). Using this model chondrocytes grown on collagen type II with or without IGF-I maintained their round phenotype until the end of cultivation. The neutral red assay revealed that chondrocytes cultivated on collagen type II in the presence of exogenous IGF-I, showed a significantly higher density of chondrocyte adhesion from the beginning of cultivation onwards in comparison to chondrocytes cultivated on collagen type II without IGF-I treatment. The cartilage-specific surface receptors (integrins of the β1-group) could also be demonstrated on the membranes of these cells. Chondrocytes cultivated on plastic with or without treatment with IGF-I, resulted in mixed cultures consisting of fibroblast-like cells and round chondrocytes as observed from the beginning of cultivation onwards. After a 3 to 5 days culture period, flat fibroblast-like cells predominated.

Hence, collagen type II and IGF-I prevent chondrocyte dedifferentiation to fibroblast-like cells and this model allows a pure chondrocyte culture.

Key Words: Chondrocyte phenotype, collagen type II, IGF-I, integrin, immunodetector microscopy

INTRODUCTION

When chondrocytes are grown in monolayer culture on dishes coated with collagen type I or on plastic, they dedifferentiate to fibroblast-like cells. They lose their polygonal phenotype and become spindle-like shape that resembles that of fibroblasts. Under these conditions, they produce collagen type I instead of type II and fewer proteoglycans (18).

Differentiation of chondrocytes in culture is supposed to be dependent on the culture conditions, such as cell density and medium, as well as on hormones and growth factors (8,11). It is known that hormones (12,14) and growth factors (15,17), interleukins (18), prostaglandins (19,20) and bone morphogenic protein (BMP) (21,24) may influence differentiation, metabolism and activity of chondrocytes or stabilize their phenotype. The matrix, too, is of great significance for the regulation of differentiation and function (25,26). The IGF-I (Insulin Like Growth Factor-I) used for our experiments also stimulates proliferation and differentiation of chondrocytes in vivo and in vitro (27,34) and matrix synthesis (incorporation of sulphate into proteoglycans).

Hence, the morphology of cartilage cells is the result of an intensive interaction between cells and their surrounding. This interaction is partly mediated by cell membrane receptors, e.g. integrins which are heterodimeric transmembrane molecules composed of an α- and a β-subunit. They consist of a large extracellular, a transmembranous and a short cytoplasmic domain. The extracellular domain is able to bind to various extracellular matrix ligands, such as collagen, fibronectin, laminin and vitronectin (35,37). Integrins of the β1-group have been demonstrated in cartilage tissue in vivo as well as in vitro (38,44).

The phenotype of cells is an important indication of the function of cells in vitro. flattening of the mostly round chondrocytes with the formation of a fibroblast-like phenotype is accompanied by a change of the synthesis programme, e.g. synthesis of collagen types I and III (45,46). Rounding of the cells, however, is associated with the synthesis of collagen type II and cartilage-specific proteoglycans (45,47,48).

The results of this study indicate that collagen type II-coating and addition of the growth factor IGF-I influence proliferation, the adhesion behaviour of cells and the maintenance of the chondrocyte phenotype in vitro.
MATERIALS AND METHODS

Antibodies: (a) Polyclonal antibody against β1 was obtained from Chemicon International, Inc., Temecula, CA, USA. Collagen types I and II were isolated and purified according to Engvall and Ruoslahti (49). Polyclonal antibodies against these collagens were raised in rabbits; specificity was controlled by the ELISA technique (50). (b) GAR-10 nm-conjugated goat anti-rabbit immunoglobulin with 10 nm gold particles was obtained from Amersham (Braunschweig, Germany).

Ham F12 nutrient mixture containing 15% FCS, 75 μg/ml ascorbic acid, 50 U/ml streptomycin, 50 U/ml penicillin and 2.5 μg/ml amphotreon B (Sermeca, München, Germany). Nutrient dishes 35 mm X 10 mm, microtiter plates (96-well plates) (Nunc Inter Med, Denmark), Epon and Thermovac (Piano, Marburg, Germany), HMDS: hexamethyldisilazan, neutral red, trypsin (FG 3,4,21,41), 1,10-F and Collagen Type II for coating (Sigma, München, Germany), collagenase (from clostridum histolyticum, 0.15 U/mg, Boehringer, Mannheim, Germany).

1. Chondrocyte cultures

Chondrocyte cultures of epiphyseal cartilage have been described in detail by Grandmann et al. (5) and Shalhoub (7). Briefly, skin of upper and lower limb buds from 17-day-old mouse embryos were removed and the remaining parts placed into Hank's salt solution. Muscles and connective tissue were removed by trypsin treatment (0.2%, twice for 30 min each at 37°C). Epiphyseal cartilage was separated from the anlage of the long bones and shaken in 2% collagenase in Hank's BSS for 60 min at 37°C. After centrifugation, the cells were washed twice with Ham F-12 growth medium. Subsequently, the washed chondrocytes were re-suspended in Ham F-12, counted and their number adjusted to 1.5 X 10⁶/ml. The cells were grown in monolayer culture, for scanning electron and light microscopic investigations on Thermovac and glass plates, for transmission electron microscopic investigations in Petri dishes and for the neutral red assay on microtiter plates. Cultivation was performed as follows on collagen type II coated substrates with/without 1GF-I (100 ng/ml). The cultures were grown in an incubator at 37°C and with 5% CO₂. The medium was changed every 3 days. Cells of day 1 to day 17 of the culture period served for our investigations.

2. Collagen coating

Thermovac, glass and microtiter plates (96-well plates) and Petri dishes were coated with collagen type II (0.5-2 mg/ml in 0.25% acetic acid), air-dried and placed under UV-light overnight. The plates were washed three times with PBS prior to use.

3. Transmission electron microscopy (TEM)

The cartilage cultures were fixed in Karnovsky's solution or in a mixture of 1% glutaraldehyde plus 1% permanganic acid in PBS followed by post-fixation in a 2% OsO₄ solution. After rinsing and dehydration, the material was embedded in Epon and cut using an Ultracet (Reichert). The ultrathin sections were contrasted with 2% uranyl acetate and lead citrate and examined under a Zeiss EM10 transmission electron microscope.

4. Immuno-electron microscopy

Pre-embedding technique for TEM: For the immunolabelling of collagen type II and fibronectin the cells were incubated with hyalurondialase (0.001 U/ml) for 15 min for 3 min at 4°C. After two times rinsing with medium, the cells were incubated in medium with the primary antibodies (collagen type II 1:50; fibronectin 1:50 and integrin β1 1:50 in medium) for 10 min at 37°C. This was followed by rinsing with medium for 3 X 5 min and incubation with the secondary antibody (GAR-10 nm 1:50) for 10 min at 37°C. Subsequently, the cells were washed with medium and fixed with 2% glutaraldehyde for 5 min. Contrasting, dehydration, embedding, sectioning and microscopic examination were performed as described above.

5. Scanning electron microscopy (SEM)

The chondrocytes grown on Thermovac plates were fixed with 1% glutaraldehyde for 5 min, followed by post-fixation with 1% OsO₄ for 5 min. Dehydration with ethanol in the ascending alcohol series, 5 min incubation in HMDS and then air-dried. The samples were gold-coated with a Technics Hummer V and examined under a Cambridge Stereoscan 250 (MK2) scanning electron microscope at 20 kV.

6. Neutral red assay

The freshly solubilized chondrocytes were grown on microtiter plates coated with collagen type II. One part of the holes was treated with IGF-I (100 ng/ml) from the beginning of cultivation onwards. The adherent chondrocytes were quantified every 24 hours using the neutral red assay. After rinsing with medium (3 times), 0.1 ml neutral red medium (0.4% neutral red in 0.01% medium without serum) were placed into each hole and incubated for 2 hours at 37°C. Only adherent vital chondrocytes stained. After incubation, the medium was removed, the cells were fixed with 2% paraformaldehyde for 2 min and incubated with ethanol and 1% acetic acid. The microtiter plate was shaken for 20 min and the released stain measured using a microplate reader (SLI-Lab Instruments, Austria) at a 540 nm filter.
RESULTS

1. Scanning electron microscopy

The chondrocytes grown on collagen type II with or without IGF-I always exhibited a round to oval shape and numerous small ridge-like or cupidal surface processes from the beginning of cultivation onwards (Fig. 1a). After 3 to 5 days, the number and density of the chondrocytes had increased. After a culture period of 17 days the remaining chondrocytes had maintained their round to oval shape. They were embedded in a network of newly formed collagenous fibris. In the second week of the culture period, more and more cells detached from the substrate leaving a network of fibrillar material, partly in the form of a pericellular capsule. Chondrocytes cultivated on collagen type II in presence of exogenous IGF-I showed a significantly higher density of chondrocyte adhesion from the beginning of cultivation onwards in comparison to chondrocytes cultivated on collagen type II without treatment with IGF-I (Fig. 1b). In experiments without collagen type II and with or without IGF-I, a mixed culture consisting of fibroblast-like cells and round chondrocytes was observed from the beginning onwards. After a 3 to 5 days culture period, flat fibroblast-like cells predominated (7).

2. Transmission electron microscopy

(a) One day after the beginning of cultivation the cartilage cells exhibited a round shape and contained a big nucleus, numerous cell organelles, a well-developed rough endoplasmic reticulum and a large Golgi apparatus. Their surface showed small ridge-like and cupidal processes. After a 2 days culture period a thin, pericellular matrix rim consisting of fine (<10 nm) irregularly running filaments could be demonstrated extracellularly on the cell surface (Fig. 2a). In the following days the quantity and thickness of fibris in this extracellular rim increased, but the morphology of the cells did not change until the end of cultivation. The cells were surrounded by a capsule of typical collagenous fibris which were arranged many singly and irregularly but more or less parallel to the surface.

Fig. 1a-b. Scanning electron microscopic investigations of chondrocytes in monolayer culture.

a. Culture period: 7 days, when the chondrocytes are cultured on collagens type II (*), the dedifferentiation did not occur and the cells maintained their round phenotype.

b. Culture period: 7 days, when the chondrocytes are cultured on collagen type II with addition of IGF-I, it revealed a higher density of the chondrocytes showing an improved adhesion and higher proliferation rate: a = ×350, bar = 20 μm; b = ×350, b = 20 μm.
Fig. 2a-c: Transmission and immunotransmission electron microscopic investigations of chondrocytes after a 2 days culture period in monolayer culture.

a: Chondrocytes (C) showed a round to oval shape and formed a thin matrix rim on their surface (arrowheads). n = nucleus. X 15000, bar = 0.5 μm.

b: Immunolabelling against collagen type II (arrowheads) on the surface of a chondrocyte revealed a cartilage-specific matrix. X 60000, bar = 0.2 μm.

c: Immunolabelling of chondrocytes against integrin β1. A dense labelling (arrowheads) is seen on the surface of the chondrocytes. X 45000, bar = 0.2 μm.
Chondrocyte phenotype in monolayer culture

![Graph showing OD at 540 nm for Neutral Red Assay with Collagen II and Collagen II + IGF-I](image)

Fig. 3. Neutral red absorption at 540 nm. The effect of collagen type II-coating and IGF-I on the number of chondrocytes in monolayer culture. The adherent chondrocytes grown on collagen type II without IGF-I showed a weaker absorption of neutral red than those chondrocytes treated with IGF-I. In both experiments, an absorption of neutral red was achieved up to a 17 days culture period. The mean values and standard deviation from three independent experiments are indicated.

OD = Optical density.

(b) Immunomorphological investigations using the "pre-embedding technique" and secondary gold-conjugated antibodies against primary collagen and fibronectin antibodies showed that the pericellular fibris consisted of collagen type II (Fig. 2b) and that fibronectin was located between the collagenous fibris (not shown). This observation could be made as early as after a 2-day culture period. Immunomorphological investigations did not reveal collagen type I in the cartilage matrix when grown on a collagen type I substrate. Integrins β1 (Fig. 2c) were observed on the surface of the chondrocytes from the first until the last day of the culture period.

3. Neutral red assay

The experiments with collagen type II coating but without IGF-I revealed an increase in neutral red content, i.e. in the number of cells (see Discussion), until day 8/9. Thereafter, the neutral red content decreased until the end of the culture period (day 17). Chondrocytes on collagen type II which had been treated with the growth factor IGF-I showed an increase in the cell number from the beginning of cultivation onwards as compared with the cells not treated with IGF-I (Fig. 3). The experiments without collagen type II coating shall not be considered in this context, since we observed a mixed population or a pure population of fibroblast-like cells.

Taken together, the neutral red assay is based on an active staining of lysosomes (51,55). Any changes in the storage of neutral red might, therefore, be due to an inhibition or stimulation of the lysosomal system.

However, assuming a constant activity of the lysosomal system, the changes in the values can be attributed to alterations in the cell number. These results indicate a positive effect of collagen type II and IGF-I on the stabilization of chondrocyte differentiation and adhesion.

DISCUSSION

Chondrocytes grown in monolayer culture at low density and with the addition of serum either differentiate, whereby their cell shape changes, or they are overgrown by fibroblast-like cells (14,55,60).

It was shown that chondrocytes, when grown on collagen type II with the addition of IGF-I, are able to survive for a long period without changes in their morphology and the secretion product. Under these conditions the chondrocytes produce collagen type II and express a pattern of surface receptors (integrins of the β1 group). The interaction between extracellular matrix and cells via receptors can regulate the behavior of chondrocytes. It leads to an activation and stabilization of cartilage cells (40-41,61,64). Moreover, it is known that IGF-I influences differentiation, proliferation and matrix formation in vivo and in vitro, thus being a regulator of cartilage behaviour (28,30,31,33,34,65).

The neutral red assay is based on an active staining of lysosomes (51,55). Any changes in the storage of neutral red might, therefore, be due to an inhibition or
stimulation of the lysosomal system. However, at constant activity the changes in the values can be attributed to alterations in the cell number. Electron microscope inspection did not confirm an influence on the lysosomal system so that a regular staining could be assumed and the finding be attributed only to a change in the cell number. The data obtained 24 hours after beginning of cultivation and after addition of the strain must mainly be attributed to the adhesion behaviour, since it takes at least 24 hours before the chondrocytes have overcome the isolation and cultivation shock and proliferation is triggered. This explanation is confirmed by the data obtained as early as after 1 hour after the beginning of cultivation (not shown here). In contrast, the changes in the values measured after 2 to 17 days could be attributed predominantly either to proliferation or to necrosis.

When grown on plastic substrates, numerous fibroblast-like cells adhere from the beginning of cultivation onwards. cartilage from 17-day-old mouse fetuses undoubtedly consists of a heterogeneous cell population (5,7,66). Fibroblasts attached to the outside of cartilage and perichondral cells are certainly also released due to enzymatic treatment. A great number of the fibroblast-like cells which increase in number in the absence of collagen coating derives from this source, i.e. we are dealing with impurities and later on with overgrowth. However, it could be shown with certainty that some chondrocytes grow on plastic substrates de-differentiate after a couple of days (5,7,36,58). Hence, some of the fibroblast-like cells might have been formed in this way. It has to be considered that due to fibroblast-like cells other collagen types, proteoglycans, factors and matrix-degrading enzymes get into the medium and additionally influence the behaviour or de-differentiation of the chondrocytes. Hence, the absence of fibroblast-like cells on collagen coating after 10 days in vitro largely depends on the missing overgrowth and its possible consequences. On the other hand, a positive effect of collagen type II on the stabilisation of chondrocyte differentiation can apart from the better adhesion and higher proliferation rate, not be excluded.

The preferential adhesion of chondrocytes on collagen type II coated substrates and the missing adhesion of fibroblast-like cells indicate a specific mechanism. Some integrins of the 131-group are available on the surface of chondrocytes for a specific binding. This integrin pattern occurs in cartilage in vivo and in vitro (7,38,4,34). Consequently, any blockade of integrins of this group should fundamentally influence the adhesion behaviour. And indeed, adhesion on collagen type II can clearly be reduced by antibodies against integrins. Integrin 131- antibodies block the adhesion of chondrocytes to collagen type II and these speak for a participation of integrins in the adhesion process (40,41,67).

The positive effect of IGF-I on proliferation, differentiation and function of chondrocytes is well known (30,33,34,65,68). When cartilage cells are grown on plastic substrates this effect is not seen, in other words, 5 days after the beginning of cultivation and the use of IGF-II only fibroblast-like cells still occur. However, when grown on collagen type II with or without IGF-I, all cells show a round shape and cartilage-specific functions, as revealed by electron microscopy and immunomorphology. After 9 days, more and more cells become necrotic without any indication of a preceding de-differentiation, i.e. flattening. The effect of IGF-I is shown morphologically by the greater number of chondrocytes. Since after 1 or 24 hours without the addition of IGF-I the cell numbers are distinctly lower, a positive effect of this substance on the adhesion behaviour can be assumed. Since, on the other hand, after 9 days the effect of IGF-I on the cell number is larger, an increase in the proliferation rate can additionally be supposed. Later on, from day 9 to 17 with or without IGF-I the cell numbers continuously decrease which can be attributed to necrotic processes. The mechanism of increases, however, cannot be assessed with certainty, since most of the cells detach from the substrate at this stage. The few cells which could be demonstrated during necrosis showed indications of a swelling of the organelles and fragmentation of the cell membrane. Therefore, apoptosis most probably does not occur. The difference in the IGF-I effect between plastic and collagen-coated substrates cannot be explained with morphological means. Obviously, the chondrocytes must have fully differentiated in order to respond to IGF-I and other cell types (fibroblast-like cells) must not counteract with factors etc. The absence of de-differentiation processes of chondrocytes grown on collagen type II in monolayer culture and the intermediate transition to necrosis are unusual findings. The collagen/cell contact apparently stabilizes differentiation until the 10 onset of necrosis. The rate of necrosis with and without IGF-I addition then runs parallel. Since, however, more cells are present after the addition of IGF-I, more cells are still available at the end of cultivation (e.g. day 17) and the culture can be used for a longer period.

The different behaviour of the cells after IGF-I treatment in dependence on the substrate can hardly be explained by our present knowledge of the IGF-I mode of action. IGF-I activates tyrosine receptor kinase via its binding to the receptor. This tyrosine receptor kinase, on its part, activates other protein kinases. During these processes enzymes or transcription factors are activated or inactivated and glucose homeostasis, proliferation and differentiation processes are regulated (69,70).

Thus, it is possible to preserve a pure chondrocyte
monolayer culture for more than 1 week on collagen type I-coated substrates. Treatment with JGF-1 increases the amount of chondrocytes and extends its usability to 3 weeks. These findings can be explained by the different adhesion behaviour of chondrocytes and fibroblast-like cells on collagen type I-coated substrates and the higher adhesion and proliferation rates after addition of JGF-1.

Acknowledgements

This work was supported by grants from the Deutsche Forschungsgemeinschaft awarded to Sh 462/2-2 and Sh 482-3. The author is indebted to Mrs. Ingrid Wolf for photographic work and Mrs. Angelika Hartl and Mrs. Angelika Steuer for technical assistance.

REFERENCES

46. Wain F, Duba J. Prolonged expression of differentiated phenotype by chondrocytes cultured at low density on a composite substrate of collagen and agarose that restricts cell spreading. Differentiation 38:140-147; 1988.

57. Showe K, Vail MS, Mayne PW, Miller DJ. Changes in the type of collagen synthesized as clones of chick chondrocytes grow and eventually lose their chondrocyte phenotype in the culture. Proc Natl Acad Sci USA 83:1674-1678; 1976.

