PURIFICATION AND EVALUATION OF SOMATIC, EXCRETO-SECRETORY AND CYSTEINE PROTEINASE ANTIGENS OF FASCIOLA HEPATICA USING IgG-ELISA IN DIAGNOSING FASCIOLIASIS

M.B. Rokni, J. Massoud, M. Petrovski and M. Jazali

Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran

Abstract - Fascioliasis, or liver fluke disease, caused by parasites of the genus Fasciola is emerging as an important disease in man and animals, in the world and Iran, particularly in northern parts. The economical losses in domestic animals are considerable. In the recent decade there were two major outbreaks of human fascioliasis in the Caspian region, northern part of Iran with 7000-10000 infected cases. Since it is impossible to diagnose fascioliasis in acute phase using coprological methods and even in chronic phases its sensitivity is low, evaluating and establishing a reliable and cost-effective test is indispensable and noteworthy.

In the present survey, we produced and examined the sensitivity and specificity of liver fluke homogenate (LFH), excretory-secretory (ES) and cysteine proteinase (CP) antigens of F. hepatica using IgG-ELISA test. A 25-27 kDa Excon coenzyme blue-stained band was observed and using of specific inhibitors indicated that this antigen belongs to the class of cysteine proteinase. The sensitivity of LFH, ES and CP antigen in IgG-ELISA was 90% for each, while their specificity was 97.8%, 98.8% and 98.8% respectively. There was a significant difference in mean OD values between cases of proven fascioliasis and other true negative cases, including healthy control individuals and patients with other parasitic diseases.

This present report is the first to demonstrate the purification and evaluation of F. hepatica cysteine proteinase antigen by IgG-ELISA test for the diagnosis of fascioliasis in Iran. In conclusion, the IgG-ELISA using ES and CP show high sensitivity and specificity and would be a valuable tool to diagnose human fascioliasis in Iran, particularly in endemic areas.

Key Words: Fascioliasis, ELISA, cysteine proteinase

INTRODUCTION

Fascioliasis is a disease caused by liver flukes of the genus Fasciola. Although fascioliasis is a common disease associated with domestic livestock it is now recognized by the World Health Organization (WHO) as a serious public health problem in man (1). Humans are infected by ingestion of aquatic plants that are contaminated with encysted cercariae (metacercariae) shed from the intermediate snail host. After exiting the metacercaria in the duodenum and forming juvenile flukes, they migrate across the liver parenchyma causing the extensive hemorrhage and liver damage. Then they reach the bile ducts after 8-12 weeks and mature sexually, afterwards commence egg production. This is the latent period of infection and individuals can be asymptomatic for several months to several years (2). The chronic stage of infection proceeds when the parasite causes damage to the bile ducts and surrounding tissue. Eggs are passed into the intestines with the bile juices and reach the exterior following defecation. The eggs then hatch to release miracidia that infect snail host, thus completing the life cycle (2).

Human fascioliasis is becoming increasingly recognized as a serious public health problem. A WHO review report estimate that as many as 17 million people are infected with liver flukes worldwide (1) and in countries such as Bolivia, Peru and Egypt the disease is thought to be hyper-endemic (3). Fascioliasis is now emerging as an important chronic disease of humans in the Gilan province of northern Iran (1). Over the past twelve years, local health clinics in this province diagnosed many cases of the disease annually (range 68-223) but in 1989 and 1999 the number of cases rose to over 7,000 and 10,000, respectively (4,5,6,7). It is imperative that studies are carried out to determine the extent of the disease throughout the Gilan and neighboring provinces as well as to diagnose infected people. Therefore the use of a simple but highly specific and sensitive standardized diagnostic test is highly essential. Coprological analysis is still commonly employed to diagnose human fascioliasis despite the overwhelming consensus that this method is not wholly
reliable (8). Using this method eggs are not detected until the latent period of infection when much of the liver damage has already occurred. In addition, eggs are released sporadically from the bile ducts and hence serial samples of infected patients can contain no eggs (3). Serological diagnosis is preferred particularly since anti-fasciolosis antibodies can be detected as early as two weeks post infection and can thus facilitate early chemotherapy intervention (8).

Some attempts have been made to diagnose human fasciolosis by detecting antibodies in the serum of patients by ELISA method. In these reports the sensitivity and specificity of test ranged between 68% - 91% and 56.2% - 100% respectively (9-16). The purpose of the present study was to isolate the cysteine proteinase antigen from the crude ES products and its evaluation by ELISA method comparing adult somatic and ES antigens.

MATERIALS AND METHODS

Preparation of antigens
Liver fluke homogenate antigen (LFH) was prepared by homogenizing adult worms in 0.15 M PBS using homogenizer followed by sonication, then centrifugation at 15000 x g at 4°C for 30 minutes, afterwards the supernatant (LFH) was stored at -20°C for later analysis.

With the aim of obtaining ES and CP antigens, live F. hepatica adult worms were obtained from infected sheep livers and washed 6 times in PBS 0.15M, Ph7.3, then maintained in RPMI-1640, Ph 7.3 culture medium, containing 23 mg/L Gentametin overnight. The culture medium, i.e. excretory-secretory products (ES), were concentrated and applied to a 320 ml Sephacryl S200 HR gel filtration column, equilibrated in 0.1 M Tris-HCL, pH 7.2. Three milliliters fractions were collected and monitored by absorbance at 280 nm for protein content. Each fraction was also assayed for cysteine protease activity using the fluorogenic substrate Z-Phe-Arg-AMC (17). The release of the fluorescent leaving group, 7-amino-4-methylcoumarin (AMC) was monitored in a Perkin Elmer Luminescence Spectrometer model LS 50, at exciter and analyzer wavelengths of 370 nm and 440 nm, respectively (17). Fractions containing proteolytic activity again were tested using Gelatin-SDS-PAGE (18) for more accuracy and were pooled, after that used as the source of cysteine proteinase (CP) antigen. Semi purified CP were analyzed by 15% SDS-PAGE (19).

The concentration of each antigen preparation was measured using Bradford method (20).

Clinical samples
Serum samples from fasciolosis-infected individuals were collected during the fasciolosis outbreak in 1999 in the Gilan province of Northern Iran.

Totally 178 patients diagnosed with fasciolosis, based on coprological analysis for F. hepatica eggs, performed on fecal samples as previously described (21); clinical presentation; Indirect Fluorescent Antibody test (IFA) using frozen sections of somatic antigen of F. hepatica performed in the laboratory of helminthological serology, School of Public Health, Tehran University of Medical Sciences. This test (IFA) gives a slightly inferior percentage of positivity to that obtained by ELISA (22); furthermore all the sera later were examined by IgG-ELISA using excretohepatic L1 (CL1) antigen in IPD lab, School of Biotechnology, Dublin City University, Dublin, Ireland and all of them showed seropositive results. The Sensitivity and specificity of this test are reported as 100% for each (11,12).

The age of the patients ranged from 3-79 years, with a mean ± standard deviation of 33.51 ± 16.95 years. The number of females participating in the study was 62.5%. Serum samples from patients infected with hydatococcus (45 individuals), toxostrongylus (20 individuals), amoebiosis (10 individuals), malaria (5 individuals) and kalaazar (2 individuals) were donated from the School of Public Health, Tehran University of Medical Sciences, using a collection of methods (23) and preparing from different laboratories. Control serum samples were obtained from 50 healthy individuals, which were examined for all related parasitic diseases.

Inhibitor studies
In order to determine the class of protease enzyme some inhibitors were used and were added to the enzyme before assaying the proteolytic activity with substrate Z-Phe-Arg-AMC (17). These inhibitors were used at final concentration of phenylmethysulfonyl fluoride (PMSF) 10mM; EDTA 10 mM; E-64 5mg/ml; leupeptin, 5μg/ml and pepstatin, 1μM (18).

Enzyme-linked immunosorbent assay (ELISA)
The Immunodiagnosis assay was performed as previously described by O'Neill et al(12). Briefly, 100 micro liters of LFH, ES or CP antigen (20, 15 and 10 μg/ml respectively) was dispensed into the wells of micro filter plates (Nunc, Kamstrup, Roskilde, Denmark) and then incubated overnight at 37°C. Excess binding sites were blocked with 200 μl of bovine serum albumin (2% diluted in PBS 0.1% Tween 20) and incubated for 30 minutes at 37°C. After the wells were washed three times with PBS (Tween 20, 100 μl of a serum sample (diluted 1:1250) was added to each plate and incubated for 60 min at 37°C. Following another washing step, 100 μl of peroxidase-conjugated goat anti-human IgG (diluted 1:7000) was added to
each well and the plates incubated for a further 60 minutes at 37°C. Following a final washing step 100 μl of O-phenylendiamine dihydrochloride (OPD) substrate (all from Sigma Chemical Co., Poole, Dorset, United Kingdom) was added to each well and the reaction stopped after 5 minutes by adding 50 μl of 12.5% H₂SO₄. The optical density (OD) of the samples was measured at 492 nm using a Titertek (Helsinki, Finland) multiwell ELISA plate reader. All assays were tested in triplicate and repeated twice. The experiments were conducted in Dept. of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences and JPD Iran, School of Biotechnology, DCGI, Dublin, Ireland.

Statistical analysis

All statistical analysis was carried out using SPSS for Windows version 10. The parameters of sensitivity, specificity and predictive values were determined according to the method of Galen (24) as follows: SE = TN / (TN + FP) × 100; SP= TP / (TP + FN) × 100; Positive Predictive Value = TP / (TP + FP) × 100 and Negative Predictive Value = TN / (TN + FN) × 100, where 'TN' stands for true negative (number of control samples, i.e., other parasitic and healthy controls) that had an extinction value of the sera, at 1:1250 dilution in ELISA test lower or higher than the cut-off value respectively; 'FP' for false positive (number of control samples that were negative by ELISA and 'TN' for false negative (number of control samples, positive by ELISA).

The OD absorbance at 492 nm cut-off values for the IgG-ELISA with each antigen was determined as the mean OD 492 nm of the total number of serum samples from healthy people + 3.09 standard deviation.

RESULTS

Quality of cysteine proteinase (CP) antigen

The quality of the CP was checked using 15% SDS-PAGE and Cetain SDS-PAGE. A 25-27 kiloDalton coomassie blue-stained band was observed and used as CP antigen in IgG-ELISA. Its proteolytic activity was completely decreased using E-64 (specific inhibitor of cysteine proteinase), whereas other inhibitors, EDTA, pepstatin and PMSF (inhibitors of metalloproteinase, aspartic protease and serine protease in that order) showed no effect or little inhibitory effect on it. These findings overall indicated that this antigen belongs to the class of cysteine proteinase.

Sensitivity, specificity and predictive values of ELISA test

The optimal concentration of LFH, ES and CP antigens for IgG-ELISA was 20, 15 and 10 μg/ml in that order, at a serum dilution of 1:1250 and peroxidase-conjugated goat anti-human IgG conjugate dilution of 1:7000.

There were no significant differences in absorbance readings between genders and no age group within the sample population demonstrated a tendency to have a higher incidence of infection.

The OD absorbances at 492 nm for the 178 patients infected with fasciolosis and those of other parasitic infections as well as healthy controls are summarized in Table 1. The cut-off value calculated as described earlier was 0.38, 0.28 and 0.27 for LFH, ES and CP correspondingly. Absorbance readings greater than the cut-off value were considered to be seropositive for fasciolosis. Accordingly all 178 individuals that showed clinical manifestations of fasciolosis were also seropositive using three antigens (Figure 1, lane 1) whereas all 50 non-infected controls were seronegative (Fig 1, lane 7). Consequently, the sensitivity of the test was 90% for all three antigens (Table 2). The mean absorbance and standard deviation for each group of individuals that were infected with diseases other than fasciolosis was verified and shown to be not significantly different from those for negative control sera (Table 1).

Table 1. Absorbance values of various sera in an indirect ELISA test using homogranate (LFH), excretory/excretory (ES) and cysteine proteinase (CP) antigens of F. hepatica

<table>
<thead>
<tr>
<th>Group</th>
<th>No. of Individuals</th>
<th>LFH Mean</th>
<th>LFH Std. Dev</th>
<th>ES Mean</th>
<th>ES Std. Dev</th>
<th>CP Mean</th>
<th>CP Std. Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fasciolosis</td>
<td>178</td>
<td>1.364</td>
<td>0.36</td>
<td>1.158</td>
<td>0.23</td>
<td>0.944</td>
<td>0.250</td>
</tr>
<tr>
<td>Hydatidosis</td>
<td>45</td>
<td>0.191</td>
<td>0.16</td>
<td>0.123</td>
<td>0.09</td>
<td>0.085</td>
<td>0.079</td>
</tr>
<tr>
<td>Toxocariasis</td>
<td>20</td>
<td>0.253</td>
<td>0.19</td>
<td>0.161</td>
<td>0.13</td>
<td>0.118</td>
<td>0.143</td>
</tr>
<tr>
<td>Amebiasis</td>
<td>10</td>
<td>0.157</td>
<td>0.09</td>
<td>0.094</td>
<td>0.04</td>
<td>0.045</td>
<td>0.01</td>
</tr>
<tr>
<td>Malaria</td>
<td>5</td>
<td>0.142</td>
<td>0.049</td>
<td>0.114</td>
<td>0.04</td>
<td>0.100</td>
<td>0.06</td>
</tr>
<tr>
<td>Kalaazar</td>
<td>2</td>
<td>0.09</td>
<td>0.03</td>
<td>0.062</td>
<td>0.01</td>
<td>0.029</td>
<td>0.006</td>
</tr>
<tr>
<td>Control</td>
<td>50</td>
<td>0.153</td>
<td>0.07</td>
<td>0.129</td>
<td>0.05</td>
<td>0.122</td>
<td>0.05</td>
</tr>
</tbody>
</table>
Table 2. Sensitivity, specificity and predictive values of liver fluke homogenate (LFH), excretory-secretory (ES) and cysteine proteinase (CP) antigens of F. hepatica in IgG-ELISA test.

<table>
<thead>
<tr>
<th>Antigen</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Positive predictive value</th>
<th>Negative predictive value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LFH</td>
<td>100%</td>
<td>97%</td>
<td>97.6%</td>
<td>100%</td>
</tr>
<tr>
<td>ES</td>
<td>100%</td>
<td>98.5%</td>
<td>98.8%</td>
<td>100%</td>
</tr>
<tr>
<td>CP</td>
<td>100%</td>
<td>98.5%</td>
<td>98.8%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Fig. 1. Analysis of sera from patients with various single infections by IgG-ELISA using F. hepatica liver fluke homogenate (LFH), excretory-secretory (ES) and cysteine proteinase (CP) as antigens. Serum samples obtained from patients with fasciolosis (178 cases, lane 1), hydatidosis (45, lane 2), toxocariasis (29, lane 3), amoebiasis (10, lane 4), malaria (5, lane 5), kalaazar (2, lane 6) and control human sera (50, lane 7).

Furthermore, the absorbance readings from the F. hepatica seropositive individuals were significantly higher than those obtained from patients that were seronegative or were infected with other parasites (P<0.001) (Fig 1). However, two individuals with hydatidosis and two with toxocariasis had antibodies that were reactive against F. hepatica LFH antigen whereas concerned ES and CP antigens each, one individual with hydatidosis and another with toxocariasis showed cross-reactivity against them (Fig 1, lanes 2, 3).

The diagnostic sensitivity, specificity and predictive values are contained in Table 2.

DISCUSSION

This present report is the first in Iran to demonstrate the purification and evaluation of F. hepatica cysteine proteinase antigen by IgG-ELISA test for the diagnosis of fasciolosis in Iran.

Stool examination for F. hepatica eggs is a reliable method, but the sensitivity is very low and only 25% of infected patients pass the eggs in the faeces (8). The infected individuals during prepatent period failed to release the eggs in the stool as well, so immunodiagnostic methods are more applicable for this purpose (8,11,25). Recently more emphasis is on the antigenic product of cysteine proteinase especially cathepsin L1 (12,17). Cysteine proteinase is a major component of the ES products and because it is immunogenic at all stages of liver fluke development in the definitive host it can be used to diagnose both the acute and chronic stages of infection.

In an attempt to compare the LFH, ES and CP antigens of F. hepatica in IgG-ELISA the present study was conducted. As is shown in figure 1, antibodies in the sera of four patients infected with hydatidosis and toxocariasis were reactive with F. hepatica LFH antigen, whereas the number of cross reaction cases decreased to two sera infected with these diseases. This finding suggests that using more purified antigen than LFH improves the output. There is a possibility that an antigen other than the protease in the F. hepatica ES and CP shares epitope(s) with a hydatid or toxocara immunogen. Cordova and co-workers (14) reported that IgG-ELISA using LFH antigen with human sera had a sensitivity and specificity of 100% and 56.2% respectively. O'Neill et al (12) concluded that the ELISA using LFH did not adequately discriminate between seronegative and seropositive individuals within the population, besides she didn’t find any cross-reactivity of F. hepatica ES with sera from 15 patients with hydatidosis in the Bolivian Altiplano. Asmar and co-workers (9) used ES antigen in ELISA test to determine the prevalence of fasciolosis in Gilan province in Iran. In previous studies the sensitivity and specificity of ES has been reported between 89 -
Acknowledgements

We express our sincere appreciation and gratefulness to Prof. John P Dalton and Sandra O'Neill from the Dublin City University in Ireland, Dr. Mottahed, Dr. Masoumi, Dr. Hamidi, Mr. Naseri, Miss Roozbehaz, Miss Minapoli and Mr. Rahimi from the Tehran University of Medical Sciences for their kind cooperation.

REFERENCES

16. Hillyer GV, Solor de Gilbom M, Rodrigues-Perez J, Bjorland J, Silve de Legbon M, Ramirez Guzman S, Bryan RT. Use of the Falcon assay screening test against antigen linked immunosorbant assay (FAST ELISA) and
enzyme-linked immunoelectrotransfer blot (EITB) to
determine the prevalence of human fasciolosis in the Bolivian

17. Smith AM, Dowd A, McConigle SM, Keegan P, Brennan
C, Trudgen A, Dalton JP. Purification of a cathepsin L-like
protease secreted by adult Fasciola hepatica. Mol. Biochem.

19. Lammeli UK. Cleavage of structural proteins during the
assembly of the head of bacteriophage 14. Nature 227:
680-83; 1970.

20. Bradford MM. A rapid and sensitive method for the
quantitation of microgram quantities of protein utilizing the
1976.

quantitative stool thick smear technique in schistosomiasis
397-402; 1972.

22. Daveau C, Ambrose-Thomas P. Serodiagnosis of human
fasciolosis by microELISA with refer to homologous somatic
or excretory-secretory antigens, compare with an indirect
immunofluorescent technic. Bioassay Pharamacother. 38: 90-94;
1982.

23. Rokai MB, Massoud J. Report of 10 cases of Visceral

24. Gales RS. Predictive values and efficiency of laboratory

Laboratory diagnosis of infection diseases. principle &