High Prevalence of SEA Gene Among Clinical Isolates of Staphylococcus aureus in Tehran

Mohammad Reza Pourmand*, Mojtaba Memariani1, Mostafa Hoseini2, and Sahar Bagherzadeh Yazdchi1

1 Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
2 Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran

Received: 2 Dec. 2008; Received in revised form: 1 Jan. 2009; Accepted: 22 Feb. 2009

Abstract- Staphylococcus aureus is a major human pathogen producing different types of toxins. Enterotoxin A (SEA) is the most common type among clinical and food-related strains. The aim of the present study was to examine the prevalence of sea in clinical isolates of S. aureus. Moreover, the correlation between sea producing strains and type of infection as well as resistance to antibiotics is also considered. 128 S. aureus isolates randomly collected from different clinical samples in Tehran University Hospitals from February 2008 to June 2008. Patients’ information including sex, infection type and the hospital where samples come from were recorded. The sea gene was observed among 60 (46.9%) of clinical isolates. There was a significant correlation between prevalence of sea gene and type of infection (P = 0.01). Furthermore, significant correlation was detected between the presence of sea gene and resistance to the most of antibiotics used in this study. The significant relationship between the type of infection and S. aureus isolates carrying sea indicates the interaction quality of the S. aureus pathogen and the host as well as the pathogenic role of S. aureus. © 2009 Tehran University of Medical Sciences. All rights reserved.

Key words : S. aureus, enterotoxin A, infection

Introduction

Staphylococcus aureus is one of the major human pathogens which can cause various infections like dermal, pulmonary and blood infections. S. aureus produces many toxins as well as non-toxic enzymes and can facilitate bacterial attack and proliferation in the body of host (1). S. aureus can also produce a series of pyrogenic toxins with superantigenic properties. TSST-1 and enterotoxins are considered to be the most important S. aureus superantigens (2) and their role as a prevalent cause of food-related poisoning has been well-defined since many years ago. More than 15 various types of enterotoxins with nearly similar amino acid frequencies have been reported (3). Enterotoxins are heat-resistant proteins which can induce nausea in the central nervous system by stimulating neuron receptors in intestine. However, if the enterotoxins enter the body through a non-oral route (blood, breathing, etc.), they will play their superantigenic role and can stimulate T-cell proliferation, as well (4). Superantigenic effects are fever generation, increased probability of developing toxic shock syndrome and secretion induction in inflammatory cytokines like Tumor Necrosis Factor (TNF-α) and interleukine-1 (5). Staphylococcal enterotoxins (Ses) are a family of nine major serological types of heat stable enterotoxins. A (SEA) is the most common type in clinical and food related S. aureus strains and it has been the incentive for most studies (5, 6). Genes of sea and see are carried by temperate bacteriophages (7-9). In the meanwhile, seb and sec are placed on chromosomes and sed and sej are carried by plasmids (9, 10). Immunologic methods including ELISA, agglutination latex, radioimmunoassay and immunodiffusion were widely used for detecting enterotoxins in sera. Unfortunately, the above-mentioned methods are based on gene expression, so they cannot be of help when the amount of toxin production lessens. Therefore, developing a rapid, sensitive method which can determine the resulting infection seems necessary for detecting toxins within the shortest possible time. In comparison to the very immunologic methods, PCR is preferable considering its higher sensitivity and other features (11-15). The aim of the present study was to examine the prevalence of sea in clinical isolates of S. aureus. Moreover, the presence of any relationship between enterotoxin A pro-
ducing strains, type of infection and sex of the patients should also be examined. On the other hand, determining the frequency of the said gene in separated strains of each hospital and medical center as well as the possible relation between sea producing isolates and antibiotic resistance will indicate a specific pattern which can determine their differences more clearly.

Patients and Methods

Bacterial strains and culture media

This descriptive cross-sectional study was conducted on 128 random S. aureus isolates collected from different clinical samples in Tehran University hospitals from February 2008 to June 2008. Patients’ information including sex, infection type and the hospital where samples come from were recorded. The isolates were first grown on nutrient agar, manitol salt agar and 5% sheep blood agar at 37°C. After overnight incubation, Gram stain and complementary biochemical tests including coagulase and catalase tests were conducted, as well. Antimicrobial susceptibility test was carried out according to NCCLS guidelines. Moreover, we used S. aureus ATCC 25923 (sea positive) (provided by Dr. Fereshteh Shahcheraghi (Pasteur Institute of Iran, Tehran)) as positive control.

DNA isolation

The isolates were first subcultured on brain heart infusion agar. Afterward, two loopfuls of cells from overnight subcultures were used for genomic DNA extraction (Bioneer Inc., South Korea). The procedure used for the extraction was similar to that recommended by manufacturer. The concentration of DNA samples was determined as micrograms per milliliter based on A260 values and adjusted to 1 µl/ml prior to PCR amplification.

PCR amplification

Final confirmation of the strains was carried out using PCR with following primers of S. aureus coagulase gene(synthesized at TAG Copenhagen, Denmark) as described previously (16). The sequences of the primers were COA-F (5’-CGA GAC CAA GAT TCA ATA AG-3’) and COA-R (5’-AAA GAA AAC CAC TCA CAT CAG T-3’). Next, PCR reaction was conducted on the final volume of 25 µl using HotStarTaq Master Mix kit (QIAGEN, Germany). In this reaction, 12.5 µl of HotStarTaq Master Mix, 2.5 µl of CoralLoad, 3 µl of the DNA template, 0.5 µl of each primer (20 pM) and 6 µl of ddH2O mixed. DNA amplification was carried out in a Primus 96 advanced thermocycler (PEQLAB Biotechnologie GmbH, Erlangen, Germany) with the following thermal cycling profile: an initial denaturation at 94°C for 5 min was followed by 30 cycles of amplification (denaturation at 94°C for 1 min, annealing at 55°C for 1 min and extension at 72°C for 1 min), ending with a final extension at 72°C for 10 min. The amplified products were shown by electrophoresis on 1% gel agarose containing ethidium bromide. After final confirmation of the isolates, the following pair of primers was designed and used for the PCR reaction of the enterotoxin A gene: SEA-F (5’-TTG CGT AAA AAG TCT GGA TT-3’) and SEA-R (5’-ATT AAC CGA AGG TTC TGT AGA-3’). PCR reaction was conducted like the previous test. The presence of 552bp amplicon indicates the positiveness of sea in isolates.

Validation of sea amplicons

The sizes of sea amplicons were similar to those anticipated from the design of the primers. Nevertheless, the resulting amplicons were cut using HindIII restriction enzyme (Fermentas) with cleavage site within the amplicon. The presence of the resulting fragments with the size of 246,154 and 137bp validate the amplified products (results not shown).

Statistical analysis

Fisher’s exact test was used for the statistical analysis of the gathered data. P values below 0.05 were considered statistically significant.

Results

In the present study, 128 S. aureus clinical isolates were collected from patients referred to Tehran University hospitals (Shariati (24.2%), Sina (20.3%), Imam Khomeini (17.2%), Loghman (14.8%) hospitals and Children’s Medical Center (23.5%)) from February 2008 to June 2008. The PCR results showed that 60 isolates (46.9%) were carrying sea (Figure 1). With regards to the hospitals, Shariati had the highest number (17 isolates) of positive S. aureus isolates. Sina hospital, Children’s Medical Center, Imam Khomeini and Loghman hospitals had 14, 12, 11 and 6 positive cases, respectively. There were 36 females (28.1%) and 92 males (71.8%) in the study. The number of sea positive cases in males and females was 47 (51.1%) and 13 (36.1%), respectively. Besides, the prevalence of sea positive isolates was not associated with sex or the hospital where samples came from (P > 0.05). However, statistical analysis of the data using Fisher’s exact test revealed that the prevalence of S. aureus isolates carrying sea
depend on the type of infection ($P < 0.01$). More interestingly, significant correlation was detected between the presence of sea gene and resistance to the most of antibiotics used in this study (Tables 1 and 2).

Table 1. Percentage of *S. aureus* isolates carrying sea gene based on type of infection by trust with 95% CI (Confidence interval), total CI = 38.1%-55.6%

<table>
<thead>
<tr>
<th>Type of infection</th>
<th>sea positive, n=60 (%)</th>
<th>95% CI of sea positive</th>
<th>Total, n =128 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urinary</td>
<td>7(43.7%)</td>
<td>19.7%- 70.1%</td>
<td>16 (12.5%)*</td>
</tr>
<tr>
<td>Pulmonary</td>
<td>23(71.9%)</td>
<td>53.2% - 86.2%</td>
<td>32 (25%)</td>
</tr>
<tr>
<td>Dermal</td>
<td>15 (39.5%)</td>
<td>24.0%– 56.6%</td>
<td>38 (29.7%)</td>
</tr>
<tr>
<td>Blood</td>
<td>8 (28.6%)</td>
<td>13.2% - 48.7%</td>
<td>28 (21.9%)</td>
</tr>
<tr>
<td>CSF</td>
<td>2(40%)</td>
<td>5.3% – 85.3%</td>
<td>5 (3.9%)</td>
</tr>
<tr>
<td>Eye</td>
<td>2(33.3%)</td>
<td>4.3%– 77.7%</td>
<td>6 (4.7%)</td>
</tr>
<tr>
<td>Bone</td>
<td>3(100%)</td>
<td>29.2% – 100%**</td>
<td>3 (2.3%)</td>
</tr>
</tbody>
</table>

* Percentage of corresponding sample from total.
** One-sided Fisher's exact test, 97.5% CI.

Table 2. Correlation between antibiotic resistance patterns and presence of sea gene among clinical isolates of *S. aureus*

<table>
<thead>
<tr>
<th>Antibiotic (µg/disc)</th>
<th>sea negative</th>
<th>sea positive</th>
<th>P^*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S (%)</td>
<td>I (%)</td>
<td>R (%)</td>
</tr>
<tr>
<td>Clindamycin (2µg)</td>
<td>52 (76.5%)</td>
<td>0 (0%)</td>
<td>16 (23.5%)</td>
</tr>
<tr>
<td>Rifampin (5µg)</td>
<td>55 (80.9%)</td>
<td>1 (1.5%)</td>
<td>12 (17.6%)</td>
</tr>
<tr>
<td>Tobramycin (10µg)</td>
<td>42 (61.8%)</td>
<td>0 (0%)</td>
<td>26 (38.2%)</td>
</tr>
<tr>
<td>Methicillin (5µg)</td>
<td>42 (61.8%)</td>
<td>0 (0%)</td>
<td>26 (38.2%)</td>
</tr>
<tr>
<td>Ceftriaxone (30µg)</td>
<td>39 (57.4%)</td>
<td>0 (0%)</td>
<td>29 (42.6%)</td>
</tr>
<tr>
<td>Ciprofloxacin (5µl)</td>
<td>43 (63.2%)</td>
<td>2 (2.9%)</td>
<td>23 (33.8%)</td>
</tr>
<tr>
<td>Chloramphenicol (30µl)</td>
<td>61 (89.7%)</td>
<td>5 (7.4%)</td>
<td>2 (2.9%)</td>
</tr>
<tr>
<td>Oxacillin (1µg)</td>
<td>41 (60.3%)</td>
<td>0 (0%)</td>
<td>27 (39.7%)</td>
</tr>
<tr>
<td>Trimethoprim-sulfamethoxazole (1.25/23.75µg)</td>
<td>46 (67.6%)</td>
<td>1 (1.5%)</td>
<td>21 (30.9%)</td>
</tr>
<tr>
<td>Gentamicin (10µg)</td>
<td>46 (68.7%)</td>
<td>2 (1.5%)</td>
<td>20 (29.8%)</td>
</tr>
<tr>
<td>Tetracycline (35µg)</td>
<td>36 (53.0%)</td>
<td>2 (2.9%)</td>
<td>30 (44.1%)</td>
</tr>
<tr>
<td>Vancomycin (10µg)</td>
<td>66 (97.0%)</td>
<td>2 (3.0%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Erythromycin (15µg)</td>
<td>40 (58.8%)</td>
<td>2 (2.9%)</td>
<td>26 (38.2%)</td>
</tr>
</tbody>
</table>

* Fisher’s exact test was used when necessary.
Discussion

Although many studies have been carried out on the detection of enterotoxin A or sea gene in food, few researchers have been conducted for its detection in clinical isolates. The study of Naffa et al. (2006) in Jordan showed that from among 100 different clinical isolates, sea, sec, and sea along with sec were detected in 15.4%, 4% and 4% of the strains, respectively. However, none of the isolates had sed, seb and see (17).

In another study conducted by Koltz et al. (2003) in Germany, 93 isolates of stool samples were studied using Real time PCR and SET-RPLA (agglutination) and it was shown that TaqMan Real Time PCR method could detect 12 (12.9%) sea carrying isolates. The number of isolates carrying seb, secI, sed were 9 (9.7%), 20 (21.5%) and 13 (14.0%), respectively. The rate was lower in agglutination method and the number of isolates for SEA, SEB, SEC and SED toxins were 7 (7.5%), 8 (8.6%), 19 (20.4%) and 7 (7.5%), correspondingly (18). This maybe because some strains produce lower level of enterotoxins below the sensitivity of SET-RPLA as a result of mutations in regulatory regions as described by the others (14).

In the present study, 60 isolates (46.9%) of the total 128 clinical S. aureus isolates contained sea gene. This prevalence rate was totally much more than the other studies. However, the study of Fluer et al. (2005) in Russia was conducted using indirect hemagglutination and it showed that the prevalence rate of the said gene in 28 blood isolates was 75.6% which is higher than that of blood isolates of current study (28.6%) (19). Moreover, they reported that the mentioned rate for strains isolated from pneumonia and infectious wound cases were 42.1% and 3%, respectively (19). Furthermore, the study of Becker et al. (2003) conducted on 219 S. aureus isolates of blood in Germany indicated that sea was the most frequent (17.4%) enterotoxin gene (8).

The statistical analysis of current data using Fisher’s exact test indicated that the percentage of S. aureus carrying sea depends on the type of infection (P < 0.01). However, there was no significant relationship between the percentage of the very gene and the patients’ sex and the hospital where samples came from. On the other hand, we found that presence of sea gene was significantly associated with higher antibiotic resistance. We are curious why those isolates carrying sea gene are more resistant to antibiotics. The enterotoxin producing strains may survive immune system attacks better than those isolates not producing it. In addition, mutant resistant isolates can also emerge due to continuous encounter with different antibiotics in hospitals (20). Thus, this will lead to evolution of superbug clones producing enterotoxins.

Considering the findings of the present study and comparing them to other studies, it can be stated that although the infection type was effective on the prevalence rate of the said gene in S. aureus isolates, the distribution of the isolates containing this gene might be higher in our society. This is due to many differences in the prevalence rate of sea in different studies. However, we should consider that detection of enterotoxin genes is not always concurrent with the toxin production. As we mentioned before, this maybe due to lower level of toxin productions or mutations in regulatory regions (14). Furthermore, high prevalence of antibiotic resistance in sea producing isolates strongly suggests that vancomycin is the only choice drug for treatment.

According to the relevant studies, the superantigenic role of enterotoxin A in the incidence of toxic shock and intensification of infections caused by S. aureus is clearly specified (1). A fatal case of endocarditis along with toxic shock resulting from enterotoxin A producing strain was reported in a young woman in Emirates in 2003 (21). This clearly shows the significance of enterotoxin A producing strains in stimulating inflammatory cytokines and its toxic effects on vascular endothelium layers and causes tissue damages.

Although TSST-1 and enterotoxin B were not the focus of attention in our study, the effective role of specialized antibodies is properly demonstrated in treating infections caused by TSST-1 and enterotoxin B producing strains (22, 23). Hence, the rapid detection of sea in clinical samples can provide the ground for preventing severe complications. In conclusion, the significant relationship between the type of infection and S. aureus isolates carrying sea indicates the interaction quality of the S. aureus pathogen and the host as well as the pathogenic role of S. aureus. In previous studies, the main emphasis was put on this gene and its expression on food samples. Therefore, the file examining the role of the very pathogen in the multi-functional pathogenesis will remain open. In addition, the expansion of antibiotic resistant S. aureus toxin generating clones in hospitals and the society might be preventable by taking preventive measures.

Acknowledgements

This research has been supported by Tehran University of Medical Sciences grant no: 87-02-27-7422. We would like to thank Dr. Fereshteh Shahcheraghi (Institute...
Pasteur of Iran, Tehran) for providing S. aureus ATCC 25923 strain.

References