Effect of Elective Percutaneous Coronary Intervention on Left Ventricular Function in Patients with Coronary Artery Disease

Younes Nozari1, Nader Jangi Oskouei2, and Zahra Khazaeipour3

1 Department of Cardiology, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
2 Department of Cardiology, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
3 Research Deputy of Imam Khomeini Hospital Complex, Brain and Spinal Injury Repair Research Center, Tehran University of Medical Sciences, Tehran, Iran

Received: 25 Mar. 2011; Received in revised form: 2 Aug. 2011; Accepted: 29 Aug. 2011

Abstract- Coronary artery disease is one of the most common causes of mortality and morbidity across the world. Its treatment includes medical treatment, coronary artery bypass graft (CABG) and percutaneous coronary intervention (PCI). The purpose of this study was to investigate the effect of PCI on echocardiographic findings of left ventricular (LV) systolic and diastolic function. 115 patients with coronary artery disease candidate for PCI were enrolled to our study. Echocardiography was done before PCI, the day after and 3-6 months later. LV systolic and diastolic function were measured and recorded. Echocardiographic finding compared with repeated measurement analysis. Mean age of the patients was 57.8±8.38 years. The mean Ejection Fraction (EF) was (%40.52±6.36) before, (%41.83±7.14) the day after, and (%44.0±7.89) 3-6 months after PCI. Diastolic dysfunction were mild to moderate before PCI, which in %74 (86 patients) were improved to mild dysfunction the day after PCI but not changed 3-6 months later (P<0.0001). PCI improved LV ejection fraction, and LV diastolic function in our patient’s population.

© 2012 Tehran University of Medical Sciences. All rights reserved.


Keywords: PCI (Percutaneous Coronary Intervention); CABG (Coronary Artery Bypass Graft); CAD (Coronary Artery Disease); EF (Ejection Fraction); LV diastolic function

Introduction

Cardiovascular diseases is one of the most common and serious disease throughout the world and the most cause of mortality and morbidity worldwide (1). Coronary artery disease (CAD) is one of the most important in this group (2). It has been expected that the mortality rate of CAD increases in the developing countries (3). Myocardial necrosis following myocardial infarction (MI) causes LV dilatation, followed by LV systolic dysfunction as a result of cardiac remodeling. Cardiac remodeling is a determinant of clinical course of heart failure (4).

Medical treatment, (PCI) and CABG are the treatment options for CAD (5). The basis of pathophysiologic benefit of revascularization is improving the function of viable myocardium (6).

Early coronary re-canalization helps to survive the viable myocardium and improve global LV function and survival (7). According to the studies in patients with CAD and LV dysfunction, the disease outcome can be improved with surgical revascularization (CABG) or PCI (6).

In comparison between PCI and CABG, it has been shown that PCI is less aggressive than CABG, is less costly, can be done just after angiography, needs less hospitalization and has fewer complications (8). PCI in patients with preserved LV function and optimal medical therapy doesn’t reduce the cardiac death and MI, but it decreases the need for other procedure and the risk of angina. Its effect on LV systolic or diastolic function is not clear (8).

Primary PCI is performed in the stage of acute MI, late PCI is carried out some days after acute MI, and elective PCI is done in CAD patients who are candidate for PCI in diagnostic processes.

PCI has been used increasingly for revascularization in ischemic heart disease (IHD) patients. In most of the
In 115 patients meeting the selection criteria mean age was 57.8±8.38 years. Mean age of men was 58±8.37 (35-75) years and for women was 57.1±8.51 (43-76) years. Earliest interval of MI and PCI was 3 weeks.

According to the history and ECG, 98 patients (85.2%) had a history of MI and 17 patients (14.78%) had no history of MI. 35 patients (30.43%) had no risk factor (Diabetes mellitus, hypertension, hyperlipidemia and smoking), 56 patients (48.69%) had one risk factor, 24 patients (20.86%) had more than one risk factor.

The Baseline characteristics of the population are summarized in Table 1. 71 patients (61.7%) had PCI on left anterior descending (LAD), 11 patients (9.6%) had on right coronary artery (RCA), 12 patients (10.4%) had intervention on left circumflex artery (LCX), 15 patients (13%) had PCI on LCX+LAD, and 6 patients (5.2%) had on RCA + LAD.

Overall, 94 patients (81.73%) had the procedure on one artery, and 21 patients (18.26%) had intervention on two arteries (Figure 1).

### Table 1. Baseline characteristic of patients.

<table>
<thead>
<tr>
<th>Male/female no</th>
<th>86/29</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age (mean ± SD)</td>
<td>57.8±8.38</td>
</tr>
<tr>
<td>Male mean age</td>
<td>58.0±8.37</td>
</tr>
<tr>
<td>Female mean age</td>
<td>57.1±8.51</td>
</tr>
<tr>
<td>Male/female rang of age</td>
<td>35-75/43-76</td>
</tr>
<tr>
<td>History of acute coronary syndrome</td>
<td>98 (85.2%)</td>
</tr>
</tbody>
</table>

### Risk Factors
- Diabetes mellitus 28 (24.34%)
- Hypertension 28 (24.34%)
- Hyperlipidemia 34 (29.56%)
- Smoking 25 (21.73%)

### Table 2. Mean ejection fraction during 3 stages of measurement.

<table>
<thead>
<tr>
<th>Stage (before PCI)</th>
<th>Stage 2 (one day after PCI)</th>
<th>Stage 3 (3-6 months after PCI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>40.17±6.62</td>
<td>41.34±7.33</td>
</tr>
<tr>
<td>Female</td>
<td>41.55±5.53</td>
<td>43.28±6.45</td>
</tr>
<tr>
<td>Total*</td>
<td>40.52±6.36</td>
<td>41.83±7.14</td>
</tr>
</tbody>
</table>

* Repeated Measurement analysis P<0.0001

Echocardiographic finding of patients was saved and the day after PCI and 3-6 months later echocardiography was repeated and the same process was carried out.

### Results

In 115 patients meeting the selection criteria mean age was 57.8±8.38 years. Mean age of men was 58±8.37 (35-75) years and for women was 57.1±8.51 (43-76) years. Earliest interval of MI and PCI was 3 weeks.

According to the history and ECG, 98 patients (85.2%) had a history of MI and 17 patients (14.78%) had no history of MI. 35 patients (30.43%) had no risk factor (Diabetes mellitus, hypertension, hyperlipidemia and smoking), 56 patients (48.69%) had one risk factor, 24 patients (20.86%) had more than one risk factor.

The Baseline characteristics of the population are summarized in Table 1.71 patients (61.7%) had PCI on left anterior descending (LAD), 11 patients (9.6%) had on right coronary artery (RCA), 12 patients (10.4%) had intervention on left circumflex artery (LCX), 15 patients (13%) had PCI on LCX+LAD, and 6 patients (5.2%) had on RCA + LAD.

Overall, 94 patients (81.73%) had the procedure on one artery, and 21 patients (18.26%) had intervention on two arteries (Figure 1).

### Table 1. Baseline characteristic of patients.

<table>
<thead>
<tr>
<th>Male/female no</th>
<th>86/29</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age (mean ± SD)</td>
<td>57.8±8.38</td>
</tr>
<tr>
<td>Male mean age</td>
<td>58.0±8.37</td>
</tr>
<tr>
<td>Female mean age</td>
<td>57.1±8.51</td>
</tr>
<tr>
<td>Male/female rang of age</td>
<td>35-75/43-76</td>
</tr>
<tr>
<td>History of acute coronary syndrome</td>
<td>98 (85.2%)</td>
</tr>
</tbody>
</table>

### Risk Factors
- Diabetes mellitus 28 (24.34%)
- Hypertension 28 (24.34%)
- Hyperlipidemia 34 (29.56%)
- Smoking 25 (21.73%)

### Table 2. Mean ejection fraction during 3 stages of measurement.

<table>
<thead>
<tr>
<th>Stage (before PCI)</th>
<th>Stage 2 (one day after PCI)</th>
<th>Stage 3 (3-6 months after PCI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>40.17±6.62</td>
<td>41.34±7.33</td>
</tr>
<tr>
<td>Female</td>
<td>41.55±5.53</td>
<td>43.28±6.45</td>
</tr>
<tr>
<td>Total*</td>
<td>40.52±6.36</td>
<td>41.83±7.14</td>
</tr>
</tbody>
</table>

* Repeated Measurement analysis P<0.0001
Effect of PCI on left ventricular function

Ejection Fraction (EF) significantly increased during 3 stages of measurements ($P<0.0001$). There was no differences in this changes between genders ($P=0.2$), and type of vessel ($P=0.09$), this increase in 2 groups with and without history of acute coronary syndrome (ACS) was the same, but EF was different in 2 groups ($P<0.0001$). Mean EF during 3 stages are showed at table 2.

In the first group (10 patients; 8.69%), EF before PCI was 25%, and didn’t show improvement the day after intervention and 3-6 months later. 46 patients (40%) in the second group had mean EF of %37.8, next day after PCI it became 38.9% and 3-6 months later was 41%. In the third group (56 patients; 48.69%), EF was 45%, 46.7% and 49.4% in different stages of study respectively. In the last group (group 4, 3 patients: 2.6%), EF was 50% and didn’t change after PCI (one day and 3-6 months later). Increase of EF was more obvious in patients who had basic EF 40% and 45%.

Diastolic dysfunction significantly improved the day after PCI ($P<0.0001$), and no obvious changes were seen in the results of one day after PCI with the results of 3-6 months later. There was no differences in this changes between genders ($P=0.2$), history of ACS ($P=0.2$) and type of vessel ($P=0.07$).

Figure 1. Frequency of PCI vessels.

Figure 2. Changes of LVEF and diastolic function before and after PCI. A (mild diastolic dysfunction), B (moderate diastolic dysfunction).
Before PCI, 49 patients (42.6%) had mild, 62 patients (53.9%) had moderate and 4 patients (3.5%) had severe LV diastolic dysfunction. The day after PCI, 12 patients (10.4) had near normal to mild, 96 patients (83.5%) had mild, and 7 patients (6.1%) had moderate LV diastolic dysfunction (Figure 2).

Discussion

In this study, we assessed 115 patients by echocardiography before and after PCI. Significant improvement in LVEF was found the day after PCI and 3-6 months later.

Silva et al. have shown that late recanalization, 12 hours to 14 days post anterior MI improved LV EF and myocardial contractility (7). Buszman et al. revealed that LVEF was increased %6± 7.2 after PCI (10).

Improvement of LVEF was seen in two other studies by Necvatal et al. (11) and Ioannidis et al. (12). LVEF received from %40±17 to %54±15 in Remmelink et al. report (13) and from %48.8±11.6 to %52.5±11.5 in Agirbasli et al. study (14).

Banerjee et al. in another study reported that late PCI on persistent total occlusion 3-28 days after MI did not reduce rate of death, re-infarction, heart failure and no change was observed in LVEF compared with optimal medical therapy (15). On the other hand, Carluccio et al. demonstrated that PCI improved LVEF (from 32% to 43%; P=0.0004) and diastolic function (16).

Discrepancy between various studies may be from: interval between MI and PCI, basic LVEF before PCI, global condition of the patients and degree of coronary artery stenosis. In our study, no change in LVEF at level of 30% or less and 50% were seen. The most improvement of LVEF was seen at 40% and 45% level.

In this study, improvement of LV diastolic function was found the day after PCI but 3-6 months later no change was observed.

Tanaka et al. studied 27 patients and showed improvement in left ventricular early diastolic filling after PCI (17). Improvement of LV diastolic function was also reported by Carluccio et al. which was mentioned above (16).

Improving of myocardial function including EF and diastolic function after revascularization may be due to improved perfusion at stunning area. Regarding to the achievement of various results in current and previous studies in one hand, and many influencing factors such as (interval between MI and PCI, basic LVEF before PCI and etc.) in the other hand, it seems more and long term investigation is required for obtaining more meaningful findings.

Acknowledgments

The authors express gratitude to all personnel’s of Imam Khomeini Cat lab and Echo lab for theirs technical assistance, as well as to Elham Aalamimilani for her cooperation.

References


Effect of PCI on left ventricular function


