Helicobacter pylori and Its Virulence Factors’ Effect on Serum Oxidative DNA Damages in Adults With Dyspepsia

Heshmat Shahi1, Rasoul Bahreiny2, and Somayeh Reisi3

1 Department of Immunology, Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
2 Department of Internal Medicine, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
3 Department of Genetics, School of Basic Sciences, Shahrekord University, Shahrekord, Iran

Received: 28 Apr. 2016; Accepted: 11 Jul. 2016

Abstract- Helicobacter Pylori infection is a common gastrointestinal infection that can cause pathological effects, increase oxidative stress and induce an inflammatory response in gastric mucosa. Inflammatory aspects may prompt the production of radical oxygen substance (ROS) which may damage cells and release 8-hydroxydeoxyguanosine (8-OHdG) to serum. In this study, we evaluate the prevalence of H. pylori virulence factors and the association between serum level of 8-OHdG, H. pylori infection, and its various virulence factors. The presence of H. pylori and prevalence of cagA, babA and oipA genes in samples were determined by rapid urease test (RUT), histopathological exam (HE) and polymerase chain reaction (PCR) and oxidative DNA damage situation were assessed by using serum level of 8-OHdG. There was not any direct relation between H. pylori negative and H. pylori oipA+specimens by 8-OHdG serum level (P>0.05). In all clinical observations, the presence of cagA and oipA genes was common. There was a statistical relationship between the presence of cagA, babA factors, and high serum level of 8-OHdG (P<0.05). The presence of cagA and babA virulence factors may be associated with increased serum 8-OHdG in dyspeptic patients and may induce the damage to gastric cells.

Keywords: Helicobacter pylori; Oxidative stress; Virulence factors; Dyspepsia

Introduction

Helicobacter pylori (H. pylori) is a spiral gram-negative microorganism. H. pylori infection is common in humans. The bacteria localize in the gastric mucosa and are known to be the main etiologic reason for gastric disorders such as gastritis, gastric ulcer (1). Many factors have a different role in the development of gastric disorders. Genetic predisposition of the patient and environmental causes and H. pylori’s virulence factors affect this process (2,3). It was proved that H. pylori virulence factors such as cytotoxin-associated gene A (CagA), blood group antigen binding adhesion (bbaA), and outer inflammatory protein (oipA) increase the risk of gastritis and ulcer more than H. pylori without these (4-7). Aerobic organisms produce reactive oxygen species (ROS) in own Cells during their living metabolism. ROS are essential for normal physiologic activity, but its reactive result can be damage to various parts of cells and increase inflammation (8). Oxidative stress is a situation that results from an inequity between the production of ROS and antioxidant defense system. In the previous years, oxidative stress was suggested as one of the basic mechanisms of prolonged illness that causes health and economic problems like diabetes mellitus, cardiovascular disease and cancer pathogenesis (9). H. pylori infection attracts immune cells to the gastric mucosa and prompts active inflammation with neutrophilic infiltration and chronic inflammation with infiltration of lymphocytes, monocytes in the gastric mucosa (1,10). These neutrophils and monocytes produce oxygen free radicals that could cause DNA damage to the adjacent cells. ROS can lead to damage in the structure of DNA, but these damages could be repaired. Extreme unrepaired DNA can contribute to the pathogenesis and lead to gene modifications that are potentially mutagenic or carcinogenic (9,11). In nuclear and mitochondrial DNA, 8-hydroxydeoxyguanosine (8-OHdG) is one of the main forms of free radical-induced oxidative lesions and has therefore been generally used.

Corresponding Author: H. Shahi
Department of Immunology, Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
Tel: +98 936 5947672, Fax: +98 45 32374266, E-mail address: heshmat.shahi@gmail.com
as a biomarker for oxidative stress. Studies showed that 8-OHdG is a helpful biomarker for risk valuation of various degenerative diseases. This metabolic product can be measured by enzymatic methods in tissues and plasma (12). The immunological procedures which usually progress in the gastric mucosa are probably decisive in the immune response determining the final outcome of the infection. Studies in H. pylori infection have discovered that adult H. pylori infection is usually in higher levels of gastric inflammation in comparison to children (13). The aim of this study was to investigate the relationship between serum 8-OHdG level, H. pylori infection and its virulence factors status in adults with Dyspepsia.

Materials and Methods

121 adult patients were included in this study, who were 20 to 70-year-old and have dyspeptic complication refer to Hajar hospital internal ward, determined with rapid urease test (RUT), Histopathological exam (HE) and polymerase chain reaction (PCR), that 67 of them been H. pylori positive. 4 patients were excluded for lacking demographic data. Patients with all positive tests (RUT, PCR, HE) were considered as positive for H. pylori infection. The procedure was approved by Ethics Committee of Shahrekord University of Medical Sciences. Gastritis was investigated by endoscopy. None of the patients had received nonsteroidal anti-inflammatory drugs (NSAIDs) and anticoagulants for 1 month before specimen collection, and none of them had received treatment for H. pylori infection, and no autoimmune disease was reported. Endoscopic biopsy samples, which were taken from antrum, were placed separately into a kit of Urease, sterilized water containing tubes and 10% buffered formalin containing tubes immediately transferred to the laboratory for HE and PCR (1,14-17).

Rapid urease test

One specimen of each patient was tested by RUT for detection of H. pylori that was performed with a Gastro urease kit (Bahar-Afshan Co, Tehran, Iran) according to manufacturer’s instruction.

Genomic DNA extraction and polymerase chain reaction

DNA was extracted from biopsy specimens using a Genomic DNA Extraction kit (Bioplux, Japan) according to manufacturer’s guidelines. The 16S rRNA and glmM genes were considered as positive for the isolated H. pylori strains. For analyses of the presence of target genes (OipA, CagA, and BabA), H. pylori extracted DNA was amplified using specific oligonucleotide primers (Table 1). DNA samples from H. pylori (D0008; Genekam, Germany) were used as a positive control, and sterile distilled water was used as a negative control.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Gene</th>
<th>Size (bp) of PCR product</th>
<th>Primer sequence (5’-3’)</th>
</tr>
</thead>
</table>
| (1) | 16S rRNA | 109 | HP:1: CTGGAGAGACTAAAGGGCTTC C
| | | | HP:2: ATACTGACGCCATGTTGGTC
| | | | F: AACGTTTTAGGGGTGTTAGGGTTT C
| | | | R: GCA TTC ACA AAC TTA TCC CCA 8
| (1) | glmM | 161 | ATC |
| (1) | cagA | 244 | F: ATGACTAAAGCAAAATATGTC R: CAGGATTTTTGATGCTTATTT T
| (1) | babA | 272 | F: CCAAACGAAAACAAAAACGT C
| (2) | oipA | 401 | R: GTTTTGTGCGATGGGATT T
| | | | F: GTGCACTCTCTTATGCTTT |

Histopathological exam

One of Gastric biopsy specimens were merged in 10% buffered formalin, cut into sequential 4 μm sections and stained with silver and giemsa for H. pylori detection (18).

ELISA for recognition of serum 8-OHdG

Venous blood samples were taken from all patients at the admission time. Serums of H. pylori-positive and negative patients were obtained by centrifugation of blood samples and were stored at -85° C until assay. Serum 8-OHdG levels were measured with a commercial kit (Japan Institute for the Control of Aging (JAICA), Shizuoka, Japan). The measurement was performed according to the manufacturer’s instructions. Serum 8-OHdG levels were compared between H. pylori
positive and negative patients.

Data analysis

The data were examined by SPSS software (Version 18.SPSS Inc, USA). Continuous variables were stated as mean or median matching to their homogeneity; categorical variables were described as a ratio. Comparison of variables was made with Student’s t-test, and P.values was analyzed using Chi-square tests to describe any significant relationship between 8-OHdG serum level and virulence factors. P.values less than 0.05 were considered statistically significant.

Results

Table 2 gives an overview of the frequent of the cagA, oipA, and babA2 status. The oipA gene was detected in 62% of the H. pylori positive biopsies. The babA gene was found in 45% of H. pylori positive specimens. The cagA gene was found in 58% of H. pylori positive specimens. Six groups were formed according to H. pylori and presence of its virulence factors and 8-OHdG level were compared between these groups that shown in table 3.

Table 2. Frequency of the cagA, babA and the oipA in studied patients

<table>
<thead>
<tr>
<th>Genotype</th>
<th>cagA</th>
<th>babA</th>
<th>oipA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CagA+babA+</td>
<td>39(58)</td>
<td>28(42)</td>
<td>30(45)</td>
</tr>
<tr>
<td>CagA+oipA+</td>
<td>37(55)</td>
<td>42(62)</td>
<td>25(38)</td>
</tr>
</tbody>
</table>

Table 3. Concentration of serum 8-OHdG levels (ng/ml) in positive and negative specimens

<table>
<thead>
<tr>
<th>Group</th>
<th>CagA+</th>
<th>babA+</th>
<th>oipA+</th>
<th>CagA+babA+</th>
<th>CagA+oipA+</th>
<th>babA+oipA+</th>
<th>Negative</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male/female</td>
<td>5/6</td>
<td>5/3</td>
<td>10/12</td>
<td>15/15</td>
<td>14/20</td>
<td>16/17</td>
<td>13/13</td>
<td>28/22</td>
</tr>
<tr>
<td>8 OHdG concentration</td>
<td>2.5±0.4</td>
<td>2.3±0.2</td>
<td>1.4±0.4</td>
<td>2.9±0.3</td>
<td>2.8±0.2</td>
<td>2.2±0.3</td>
<td>3.4±0.4</td>
<td>0.8±0.2</td>
</tr>
<tr>
<td>P.value</td>
<td><0.03</td>
<td><0.03</td>
<td>>0.05</td>
<td><0.02</td>
<td><0.05</td>
<td>=0.03</td>
<td><0.01</td>
<td>>0.05</td>
</tr>
<tr>
<td>Total</td>
<td>11</td>
<td>8</td>
<td>22</td>
<td>30</td>
<td>34</td>
<td>33</td>
<td>26</td>
<td>50</td>
</tr>
</tbody>
</table>

Presence of cagA/babA, cagA/oipA, oipA/babA and cagA/oipA/babA virulence factors in specimens was 45%, 51%, 49% and 39% respectfully. There was no significant difference between H. pylori negative, H. pylori cagA positive, H. pylori babA positive, H. pylori oipA positive, H. pylori CagA+babA+, H. pylori cagA+oipA+, H. pylori oipA+babA+ group with respect to gender and age (not mentioned).

The ELISA results for detection of serum levels of 8-OHdG showed relationship differences in levels of 8-OHdG in H. pylori+comparing with H. pylori-samples. Serum 8-OHdG levels of H. pylori oipA+ and H. pylori (-) group were closer (1.4±0.4 ng/ml and 0.8±0.2 respectively P>0.05). The serum levels of 8-OHdG in other groups were high, and there were statistical differences between H. pylori negative, H. pylori OipA+ by H. pylori cagA+ and H. pylori babA+groups (P>0.05). Patients infected with H. pylori bearing CagA and babA has significantly higher 8-OHdG levels than other groups (P<0.05). Figure 1 shows an association between the presence of virulence factors and serum concentration of 8-OHdG in infected and non-infected patients.

Discussion

H. pylori are known as a main pathogenic factor in humans, which causes active chronic inflammation and induce gastric mucosal disorders. More than 50% of the
world’s human population are frequently infected with this bacteria with or without any symptoms (19). Also, there are variations in \textit{H. pylori} prevalence in different countries. \textit{H. pylori} virulence factors and infection are a source for creating free radicals. Previous reports have shown that there was a relation between \textit{H. pylori} infection and generation of ROS in infected areas. Cellular glutathione concentrations in cells may be reduced by several causes such as \textit{H. pylori} infection, and the cells can release the reactive oxygen species (ROS). Oxidative stress can induce the serum 8-OHdG level, and oxidative stress can increase by Elevated ROS production in the gastric mucosa. 8-OHdG is a proved indicator for oxidative DNA damage which makes one of the common changes in DNA induced by ROS (20). This is reported that \textit{H. pylori} infection can induce gastritis and these inflammatory reactions prompt pathogenesis of cancer and this is observed in many studies that ROS may have roles in carcinogens. Chronic infection by \textit{H. pylori} can induce chronic inflammation by attracting immune inflammatory cells such as macrophage and lymphocyte to the gastric mucosa, and these cells can produce ROS for killing the bacteria, but same ROS may damage the host cells structures (21). There are variations in the distribution of \textit{H. pylori} virulence factor genes among strains in different zones of the world (22).

\textit{H. pylori} produce cytotoxin-associated protein CagA, outer inflammatory protein oipA, and the blood group antigen binding adhesion babA, which are the important virulence factors that cause in the pathogenesis of \textit{H. pylori} (23). Previous studies have shown that cagA, babA and oipA gene is present in 50-70%, 44-91%, 33-71% of \textit{H. pylori} strains in Iranian patients (1,2). In this study, we found 58%, 45% and 62% infected patients with cagA-positive, babA-positive and oipA-positive strains which are similar to some reports from Iran (24). In this study, it was not observed any direct relation between \textit{H. pylori} negative patients and serum level of 8-OHdG as like as previous reports. Also, at the \textit{H. pylori} cagA-negative and babA-negative samples, there were not statistical relations between the presence of oipA virulence factor and serum level of 8-OHdG. However, another study observed that the serum levels of 8-OHdG in patients that infected by \textit{H. pylori} was higher than negative patients (25).

By other observation in this study, the predominance of cagA and babA were observed in all clinical high concentration of 8-OHdG serum level in patients which is in agreement with another study (8,20,21,26). Contrary to our results, Tabatabaei et al., showed that there was not an association between cagA status and 8-OHdG serum level in patients (27).

To the best of this study, this observation is the first report considering associations between a high concentration of 8-OHdG serum level and babA2 virulence factor. Also, in this study, it is observed that in the combined form of virulence factors, the serum level of 8-OHdG is higher than other groups that these results are reported for the first time in the like studies. In conclusion, this study proposes that babA2-positive, cagA-positive strains may damage to the cell and have a direct relation between the presence of these virulence factors and serum level of 8-OHdG, especially in combined forms. CagA and OipA were common strains in Iranian patients, and there were not observed any statistical association between the presence of oipA virulence factors and clinical outcomes. Finally, it is suggested that involving more patients and virulence factors may be helpful in assessing the samples.

References

Helicobacter pylori and DNA damage

