Scrotal Lesions of Metastatic Rectal Adenocarcinoma: Case Report and Literature Review

Mansour Moghimi, Amir Aryanfar, Hassanali Vahedian-Ardakani, Fatemeh Joukar

1 Department of Pathology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
2 School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
3 Department of Hematology, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran

Received: 28 Feb. 2018; Accepted: 15 Dec. 2018

Abstract - Secondary scrotal tumors originating from viscera are rare and indicate a poor prognosis. We report a patient who underwent abdominoperineal resection due to his rectal cancer. Tumor recurrence at the surgical site led to prostate involvement. About 1 month after the prostatectomy, scrotal skin metastasis presented as bilateral papulonodular lesions. Finally, brain metastasis occurred and caused his death. Also, several ways by which malignancies can metastasize to scrotum have been discussed.

© 2019 Tehran University of Medical Sciences. All rights reserved.


Keywords: Colorectal cancer; Scrotal lesion; Skin involvement; Metastasis

Introduction

Colorectal cancer, the most common gastrointestinal malignancy, is the third fatal cancer in the U.S. (1,2). About 20% of patients may represent distant metastases at diagnosis, and other 30% may have metastases during their disease course (3-5). Theses metastases usually involve liver, peritoneum, and lungs (6). On the one hand, metastases of colorectal cancer to the scrotum are rare. Moreover, secondary metastases of the scrotum are also rare. Urinary (7-11), gastrointestinal (12,13), and respiratory (14) systems can be considered as the possible origin of these rare metastases. Here, we explain a 59-year-old man with scrotal metastasis derived from colorectal adenocarcinoma.

Case Report

A 59-year-old man was admitted to our hospital, in September 2010, with a history of polypectomy 5 years earlier. He complained of abdominal pain and rectorrhagia. Colonoscopy revealed an ulceroinfiltrative lesion that involved rectal mucosa, just above the anal verge. Pathologic examinations demonstrated rectal papillary adenocarcinoma. Neoadjuvant chemotherapy with FOLFOX regimen for 2 courses was started and then, chemotherapy with capecitabine and radiotherapy. The patient referred to a surgeon, but he postponed it and 75 days later, underwent abdominoperineal resection (APR). Sampling from lymph nodes proved metastasis (T3N1), so chemotherapy was continued with FOLFIRI administration.

Twelve sessions of chemotherapy were effective and the patient's condition became better. Thereafter, he was followed up with different laboratory tests every 3 months and computed tomography-scan if it was needed. About nine months after the last session of chemotherapy, the patient complained of severe pain at the surgery site, which increased by sitting. Laboratory findings included a dramatic rise in Carcinoembryonic antigen (CEA) and Carbohydrate antigen 19-9 (CA 19-9) levels. MRI and pathologic investigations demonstrated tumor invasion to the prostate and pericoccygeal tissues, so prostatectomy was performed. Following the surgery, testicles infection and irritation occurred; thus levofloxacin and cephalaxin were administered.

By the next month, bilateral hemorrhagic papulonodular scrotal lesions appeared. The largest one of these burning, painful, and erythematous lesions had a 1 cm diameter.
Figure 1. Papulonodular scrotal lesions of metastatic rectal adenocarcinoma.

Figure 2. Axial T1W and Coronal T1W FS with the contrast of scrotum show scrotal skin thickening and signal changes as a low signal in T1W and High in T2W (not shown) with enhancement suggestive for scrotal invasion.

Immunostaining for CK 20, CK 7, and CKAE 1/3 confirmed cutaneous metastasis of colonic adenocarcinoma. The patient underwent FOLFIRI-Avastin chemotherapy protocol and radiotherapy. Some of the lesions disappeared, but most of them remained unmodified.

Figure 3. Scrotal skin metastasis from rectal adenocarcinoma (H and E, 4x).

Figure 4. Immunohistochemical staining shows strongly positive expression of CD20 (10x).

Three months later, due to an unexplained headache, MRI was done and revealed 2 well-defined enhancing mass lesions in gray-white matter junction of the right and left frontal lobes (21*15 mm and 21*19 mm) with prominent peripheral edema suggestive of a metastatic lesion. Radiotherapy was not efficient and finally, the patient expired.

Figure 5. Axial T1W, T2W, and T1W with the contrast of brain reveal two intraaxial mass lesions in both frontal lobes, the intermediate signal in T1W and low signal in T2W with marked enhancement and massive peripheral vasogenic edema, consistent with metastases

Discussion

Breast cancer in women and lung cancer in men are neoplasms that mostly metastasize to the skin. Cutaneous metastasis of internal malignancies occurs in 0.7-9.0% of all malignancies (15,16). Previous studies showed that cutaneous metastasis of rectal cancer mostly occur in the first 3 years of the disease course, and this period is about 4-24 months for scrotal metastasis (17-27). There was also a report of metastatic scrotal nodules 5 months before diagnosis of colorectal carcinoma (28).

Cutaneous metastasis is not only rare, but also implicates its poor prognosis that the median survival is about 20 months (28). Mostly, extensive metastatic diseases cause skin secondary tumors, which are the sign of therapy failure, recurrence, or as the first presentation of occult malignancy (27,29).

Our patient first had a prostate involvement due to tumor recurrence at the surgical site lasting to prostatectomy. Although prostate involvement in rectal cancer is not rare, it has been reported in just one of the similar reported cases. Twenty-one months after completion of the tumor therapy, secondary malignancy showed itself by itchy, erythematous, and hemorrhagic papulonodular lesions on the scrotum. Secondary scrotal tumors occur in several proposed routes, including retrograde venous embolism, retrograde lymphatic extension, arterial embolism, direct invasion along the testicular cord, and transperitoneal seeding through a congenital hydrocele (12,30,31). Scrotal structures are not through the rectal venous and lymphatic drainage pathway; there is no inguinal lymphatic involvement, the scrotum is not in contact with the rectum, so by

Scrotal lesions of metastatic rectal adenocarcinoma

ruling out other possible mechanisms, the metastatic pathway in our case seems to be an arterial embolism.

Overall, brain metastases in patients suffering from cancers are common and gastrointestinal malignancies such as colorectal adenocarcinoma, also are no exception (32). At the time of diagnosis of colorectal cancer, brain involvement might be present in 2-3% of the cases. Additionally, 10% of patients can develop brain metastases during the course of their disease. It is more common in old patients with the mean age of 61.5 and usually occurs about 27 months after the diagnosis of primary cancer (33). Our case developed brain lesions when he was 61-year-old, 24 months after the first diagnosis of colorectal cancer. In a few cases, calcification of the metastatic brain lesions has been reported, which is more suggestive of a primary brain tumor (34). In between, he complained of a continuous headache, so MRI was performed. Brain metastasis has not been mentioned in any of the colon adenocarcinomas with scrotal metastasis reports which can lead to his death.

Although skin metastasis is rare, it might be the initial manifestation of gastrointestinal malignancies. Also, it must be considered as a differential diagnosis in a patient with colorectal cancer, so serial physical examination is important, and in the case of suspicious lesions, biopsy, and pathologic studies may confirm the diagnosis.

Table 1. Summary of related articles

<table>
<thead>
<tr>
<th>Author, year</th>
<th>Age</th>
<th>Morphology of tumor origin and stage</th>
<th>Primary cancer treatment</th>
<th>Other sites of metastasis</th>
<th>Clinical manifestation</th>
<th>Medication</th>
<th>Follow-up (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lookingbill et al, 1990(28)</td>
<td>NR</td>
<td>colorectal Adeno</td>
<td>R</td>
<td>Nod</td>
<td>NR</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Shetty et al, 1998(19)</td>
<td>60</td>
<td>moderately differentiated rectal Adeno</td>
<td>APR</td>
<td>lymph nodes, groin node</td>
<td>multiple Nodes</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Boucher et al, 2001(20)</td>
<td>30</td>
<td>colorectal Adeno</td>
<td>NCR+APR</td>
<td>lung</td>
<td>Ulcerated Paps, Plqs</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Melis et al, 2002(35)</td>
<td>41</td>
<td>rectal Adeno (stage IV)</td>
<td>NCR</td>
<td>anal sphincter, prostate, hepatic lobes, lymphatic and vascular vessels</td>
<td>erythematous Plqs</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Hayashi et al, 2003(21)</td>
<td>50</td>
<td>Rectal Adeno</td>
<td>R</td>
<td>inguinal lymph node</td>
<td>slightly reddish Nods</td>
<td>NR</td>
<td>7</td>
</tr>
<tr>
<td>Reuter et al, 2007(22)</td>
<td>69</td>
<td>colorectal Adeno (at least stage III)</td>
<td>NCR+ APR</td>
<td>groin, generalized lymphogenic spread mesorectal lymph node, liver</td>
<td>asymptomatic, erythematous soft Plq</td>
<td>NR</td>
<td>6</td>
</tr>
<tr>
<td>McWeeney et al, 2009(23)</td>
<td>72</td>
<td>poorly-differentiated Adeno(stage III)</td>
<td>R+ NCR</td>
<td>Nodes</td>
<td>wide local excision.</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Goris Gbenou et al, (36)</td>
<td>79</td>
<td>Rectal Adeno</td>
<td>R</td>
<td>penis, pubis</td>
<td>papulonodules</td>
<td>chemotherapy</td>
<td>6</td>
</tr>
<tr>
<td>Balta et al, 2012(24)</td>
<td>46</td>
<td>rectal mucinous Adeno (stage III)</td>
<td>R</td>
<td>left inguinal, perianal region rectal recurrences, spermatic cord</td>
<td>multiple eroded Nodes/ ulcers</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Ozgen et al, 2013(25)</td>
<td>65</td>
<td>Rectal Adeno (IIA)</td>
<td>NCR+R</td>
<td>slightly reddish Nodes</td>
<td>CR</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Udloff et al, 2016(26)</td>
<td>56</td>
<td>Colonl Adeno</td>
<td>NCR+R</td>
<td>abdomen skin</td>
<td>Paps and Nods</td>
<td>CR</td>
<td>18</td>
</tr>
<tr>
<td>Dehal et al, 2016(27)</td>
<td>47</td>
<td>Rectal mucinous Adeno (stage IV)</td>
<td>palliative CR</td>
<td>aortocaval and left inguinal lymphadenopathy, retroperitoneal lymphadenopathy</td>
<td>Nods</td>
<td>Palliative radiation therapy</td>
<td>12</td>
</tr>
<tr>
<td>Wu et al, 2016(37)</td>
<td>36</td>
<td>rectal Adeno</td>
<td>APR</td>
<td>penis, liver</td>
<td>Ulcerated Paps, Plqs</td>
<td>Palliative chemotherapy</td>
<td>16</td>
</tr>
<tr>
<td>Swofford et al, 2017(29)</td>
<td>54</td>
<td>Adeno</td>
<td>CR</td>
<td>mass, necrotic wound, discharge hemorrhagic, erythematous nodulopapular lesions</td>
<td>CR</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Moghim et al, 2017</td>
<td>59</td>
<td>rectal Adeno</td>
<td>NCR+R</td>
<td>prostate, brain</td>
<td>CR</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Abdominoperineal resection = APR; Chemoradiation = CR; Neoadjuvant chemoradiotherapy = NCR; Nodules = Nod; Papules= Pap; Plaques=Plq; Not reported= NR; Resection= R
Acknowledgements

The authors would like to appreciate Mr. Mehrdad Rouzbeh for his efforts in finding the patient's images and Dr. Hossein Ahrar for his valuable comments.

References

Scrotal lesions of metastatic rectal adenocarcinoma