Association Between a 50bp Ins/Del Genetic Variation at Promoter of the Superoxide Dismutase-1 (SOD1) and the Risk of Dependency to Opium and Methamphetamine

Khyber Saify, Mostafa Saadat

Department of Biology, School of Sciences, Shiraz University, Shiraz, Iran

Received: 13 Aug. 2018; Accepted: 28 Sep. 2018

Abstract: Superoxide dismutase-1 (SOD1, OMIM: 147450, copper-zinc superoxide dismutase) is one of the major antioxidant enzymes, which plays an important role in clearance of reactive oxygen species. A common genetic polymorphism of 50 bp insertion/deletion (Ins/Del) in the promoter region of the SOD1 has been reported. The purpose of the present study was to investigate the association between this polymorphism and the risk of opium (OD) and methamphetamine (MD) dependency. The present report was consisted of two case-control studies. The first study consisted of 143 OD subjects and 570 healthy controls. The second study consisted of 65 cases with MD and 635 controls. The controls were selected randomly from the healthy blood donors. Genotyping were carried out using PCR based method. Statistical analysis indicated that neither the Ins/Del (OR=1.06, 95% CI: 1.62, P=0.464) nor the Del/Del (OR=0.57, 95% CI: 0.13-2.55, P=0.464) genotypes were associated with the risk of OD. Although the frequency of the Ins/Del genotype was lower among methamphetamine-dependent persons compared to healthy control subjects, there was no significant association between the Ins/Del polymorphism and the risk of MD (OR=0.82, 95% CI: 0.44-1.53, P=0.547). The present findings demonstrated that the SOD1 50bp Ins/Del polymorphism is not associated with the risk of OD and MD.

Keywords: Drug-dependent; Ins/Del; Polymorphism; SOD1

Introduction

Superoxide dismutase-1 (EC 1.15.1.1; SOD1, OMIM: 147450, copper-zinc superoxide dismutase) metabolizes highly reactive and more dangerous superoxide radicals into less reactive molecules (O2 and H2O2), therefore provide protection against superoxide radicals toxicity (1). Subsequently, H2O2 is converted into H2O by catalase or glutathione peroxidase. The imbalance between the production of reactive oxygen species (ROS) and antioxidant systems (including enzymatic defense system) referred to as oxidative stress. Oxidative stress is associated with several chronic diseases such as psychiatric diseases (2-4).

Numerous genetic variations in the human SOD1 gene have been reported. Previous studies have shown the association of SOD1 genetic polymorphisms with the risk of numerous oxidative stress diseases such as senile cataract, cancers, etc. (1,5-11). A common 50bp insertion/deletion (Ins/Del) genetic variation in the promoter region of the SOD1 (1684 bp upstream of the ATG start codon) has been reported (12). The 50bp-deleted region contains a number of transcription factor binding sites, such as SP1. Studies have been shown that the Del allele significantly reduces the SOD1 promoter activity (12-14).

Opiates may cause oxidative stress in drug-dependent persons (3,4). Morphine decreases the expression level of the mu-opioid receptor via ROS production in morphine-treated SH-SY5Y cells (15). Oxidative stress is highly important in the brain, because it may change the function of the N-type and/or L-Type Ca2+ channel (16). It should be mentioned that the SOD1 is expressed in the various parts of the brain (17). The SOD1 expression level in SH-SY5Y cells showed significant alterations after the cells were exposed to methadone and morphine (18-20). Very recently, we reported the association between the SOD1 Ins/Del polymorphism and the risk of heroin dependence.
Ins/Del polymorphism of $SOD1$ and addiction

Although the association studies on polymorphism of several genes involved in antioxidant defense and dependency to opium and methamphetamine have been reported (21-28), there is no published study considering the association between the $SOD1$ Ins/Del polymorphism and the risk of dependency to opium (OD) or methamphetamine (MD). Therefore, the present study was carried out.

Materials and Methods

Subjects

The present report consisted of two case-control studies (Figure 1).

![STARD flow diagram demonstrating the selection cases and controls](image)

The first study consisted of 143 opium dependent subjects (12 females, 131 males) and 570 healthy controls (55 females, 515 males). The selection and characteristics of cases and control groups have been described in detail in our previous reports (23,24). The second study consisted of 65 patients (13 females, 52 males) with dependency to methamphetamine and 635 controls (110 females, 525 males) which were randomly selected from the healthy blood donors. A detailed description of these groups has been reported in our previous report (22). Considering that the Iranian population is very heterogeneous (29-32), we selected the participants from Persian (Caucasians) Muslims living in Shiraz (Fars province, south-west Iran). All patients were interviewed by a senior psychiatrist using the Structured Clinical Interview based on the Diagnostic and Statistical Manual of Mental Disorders, fourth edition (DSM-IV) criteria for dependency to opium and methamphetamine. The patients were on methadone maintenance for treating drug dependency. Control individuals were blood donors, who declared that they did not have substance abuse.

The study protocol complied with the ethical principles of the Declaration of Helsinki and was approved by the Ethics Committee on Biological Research of the Shiraz University (Iran). Informed consent was obtained from each volunteer before the study.

Genotyping

Genomic DNA was extracted from blood samples. All samples were genotyped for the $SOD1$ Ins/Del polymorphism using the PCR method, as described previously (10).

Statistical analysis

The goodness-of-fit χ^2 test was used to verify whether the genotypic distributions were in accordance with the Hardy-Weinberg equilibrium. The associations between the genotypes and the risk of drug dependency were assessed by odds ratios (ORs) and its 95% confidence intervals (CIs). The Ins/Ins genotype was used as the reference group. Statistical analysis was performed using the Statistical Package for Social Sciences (SPSS Inc., Chicago, IL, USA; version 11.5). A probability of $P<0.05$ was considered statistically significant. All statistical tests were two-sided.

Results

Table 1 shows the genotypic prevalence of the studied polymorphism in the opium (OD) and methamphetamine-dependent (MD) patients and healthy control groups. The observed genotypic frequencies of the Ins/Del polymorphism in control groups were consistent with the expected frequencies based on the Hardy-Weinberg
equilibrium (For OD study: \(\chi^2 = 0.92, \text{df}=1, P=0.335 \); For MD study: \(\chi^2 = 0.01, \text{df}=1, P=0.973 \)).

<table>
<thead>
<tr>
<th>Genotypes</th>
<th>Controls N (%)</th>
<th>Cases N (%)</th>
<th>OR</th>
<th>95% CI</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opium dependency</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ins/Ins</td>
<td>424 (74.4)</td>
<td>106 (74.1)</td>
<td>1.0</td>
<td>0.69-1.62</td>
<td>0.788</td>
</tr>
<tr>
<td>Ins/Del</td>
<td>132 (23.2)</td>
<td>35 (24.5)</td>
<td>1.06</td>
<td>0.36-3.55</td>
<td>0.464</td>
</tr>
<tr>
<td>Del/ Del</td>
<td>14 (2.5)</td>
<td>2 (1.4)</td>
<td>0.57</td>
<td>0.13-2.55</td>
<td>0.464</td>
</tr>
<tr>
<td>Ins</td>
<td>980 (86.0)</td>
<td>247 (86.4)</td>
<td>1.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Del</td>
<td>160 (14.0)</td>
<td>39 (13.6)</td>
<td>0.96</td>
<td>0.66-1.41</td>
<td>0.862</td>
</tr>
<tr>
<td>Methamphetamine dependency</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ins/Ins</td>
<td>467 (73.5)</td>
<td>51 (78.5)</td>
<td>1.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ins/Del</td>
<td>155 (24.4)</td>
<td>14 (23.5)</td>
<td>0.82</td>
<td>0.44-1.53</td>
<td>0.547</td>
</tr>
<tr>
<td>Del/ Del</td>
<td>13 (2.0)</td>
<td>0 (0.0)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ins</td>
<td>1089 (85.7)</td>
<td>116 (89.2)</td>
<td>1.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Del</td>
<td>181 (14.3)</td>
<td>14 (10.8)</td>
<td>0.72</td>
<td>0.40-1.29</td>
<td>0.277</td>
</tr>
</tbody>
</table>

Statistical analysis indicated that neither the Ins/Del nor the Del/Del genotypes were associated with the risk of OD (Table 1). There was no significant linear trend between the number of Del alleles and the risk of OD (\(\chi^2 = 0.03, \text{df}=1, P=0.864 \)). Although the frequency of the Ins/Del genotype was lower among methamphetamine-dependent persons compared to healthy control subjects, there was no significant association between the Ins/Del polymorphism and the risk of MD (OR=0.82, 95% CI: 0.44-1.53, \(P=0.547 \)).

Discussion

It has been well established that oxidative stress is associated with opium dependency (3,4). It has been suggested that the SOD1 activity is potentially important in etiology of oxidative stress-related diseases. The Del allele was associated with reducing the promoter activity of the SOD1 (12-14), and subsequently, it may alter the level of ROS detoxification. Therefore, we hypothesized that this polymorphism might be associated with the risk of dependency on opium and methamphetamine. However, we found no evidence for the association between the SOD1 Ins/Del polymorphism and risk of OD and MD. Previously it has been reported that this polymorphism is not associated with the risk of heroin dependence (13), which is supported by the present study.

Our present study has some limitations. First, considering that several environmental factors are associated with the risk of dependency on drugs (33,34) and several factors are associated with expression level of the SOD1 (35-37); therefore the interaction of the SOD1 Ins/Del polymorphism and environmental factors on risk of dependency to opium and methamphetamine should be carried out simultaneously. Second, the estimated ORs in some comparisons revealed that the Del allele might be negatively associated with the risks of OD and/or MD. However, because of our small sample size, we failed to find statistically significant associations. It is important to gather data from several large studies before final conclusions regarding the association of the study polymorphism and risk of dependency on opium and methamphetamine can be drawn.

Acknowledgments

The authors are indebted to the participants for their close cooperation. We thank Mr. Iman Kakaeinezhad (Shiraz University) for his assistance in genotyping and Dr. Iraj Saadat (Shiraz University) for his comments that greatly improved the manuscript.

References

29. Rafiee L, Saadat I, Saadat M. Glutathione S-transferase genetic polymorphisms (GSTM1, GSTT1 and GSTO2) in