Trigonelline Ameliorates Learning and Memory and Synaptic Plasticity Impairment in Intrahippocampal Amyloid Beta (1-40) Rat Model of Alzheimer’s Disease

  • Javad Fahanik-Babaei Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran.
  • Tourandokht Baluchnejadmojarad Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran. and Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
  • Farnaz Nikbakht Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran. and Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
  • Mehrdad Roghani Neurophysiology Research Center, Shahed University, Tehran, Iran.
Keywords: Trigonelline, Alzheimer’s disease, Amyloid β, Learning and memory, Synaptic plasticity, Long-term potentiation

Abstract

Intrahippocampal amyloid β (Aβ) negatively affects synaptic plasticity with subsequent impairment of learning and memory. Trigonelline is an alkaloid commonly found in fenugreek seeds and coffee beans with neuroprotective property and a promising agent for management of neurodegenerative disorders like Alzheimer’s disease (AD). In the present study, the possible beneficial effect of trigonelline on the improvement of learning and memory and synaptic plasticity was evaluated in Aβ (1-40) rat model of AD. For modeling AD, aggregated A

References

Pratico D. Oxidative stress hypothesis in Alzheimer's disease: a reappraisal. Trends in Pharmacological Sciences 2008;29(12):609-15.

Goedert M, Spillantini MG. A century of Alzheimer's disease. Science 2006;314(5800):777-81.

Reitz C. Dyslipidemia and the risk of Alzheimer's disease. Curr Atheroscler Rep 2013;15(3):307.

Ghahremanitamadon F SS, Zargooshnia S, Nikkhah A, Ranjbar A, Soleimani Asl S. Protective effects of Borago officinalis extract on amyloid β-peptide(25-35)-induced memory impairment in male rats: a behavioral study. Biomed Res Int. 798535. doi: 10.1155/2014/798535. Epub 2014 Jun 11. 2014.

Nitta A, Fukuta T, Hasegawa T, Nabeshima T. Continuous infusion of beta-amyloid protein into the rat cerebral ventricle induces learning impairment and neuronal and morphological degeneration. Japanese Journal of Pharmacology 1997;73(1):51-7.

Sohanaki H, Baluchnejadmojarad T, Nikbakht F, Roghani M. Pelargonidin Improves Passive Avoidance Task Performance in a Rat Amyloid Beta25-35 Model of Alzheimer's Disease Via Estrogen Receptor Independent Pathways. Acta Medica Iranica 2016;54(4):245-50.

Morris RG, Garrud P, Rawlins JN, O'Keefe J. Place navigation impaired in rats with hippocampal lesions. Nature 1982;297(5868):681-3.

Mogensen J, Pedersen TK, Holm S, Bang LE. Prefrontal cortical mediation of rats' place learning in a modified water maze. Brain Research Bulletin 1995;38(5):425-34.

Sohanaki H, Baluchnejadmojarad T, Nikbakht F, Roghani M. Pelargonidin improves memory deficit in amyloid beta25-35 rat model of Alzheimer's disease by inhibition of glial activation, cholinesterase, and oxidative stress. Biomedicine and Pharmacotherapy 2016;83:85-91.

Takamura Y, Ono K, Matsumoto J, Yamada M, Nishijo H. Effects of the neurotrophic agent T-817MA on oligomeric amyloid-beta-induced deficits in long-term potentiation in the hippocampal CA1 subfield. Neurobiology of Aging 2014;35(3):532-6.

Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, et al. Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proceedings of the National Academy of Sciences of the United States of America 1998;95(11):6448-53.

Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, et al. Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 2002;416(6880):535-9.

Selkoe DJ. Alzheimer's disease is a synaptic failure. Science 2002;298(5594):789-91.

Shailajan S, Menon S, Singh A, Mhatre M, Sayed N. A validated RP-HPLC method for quantitation of trigonelline from herbal formulations containing Trigonella foenum-graecum (L.) seeds. Pharm Methods 2011;2(3):157-60.

Tohda C, Kuboyama T, Komatsu K. Search for natural products related to regeneration of the neuronal network. Neurosignals 2005;14(1-2):34-45.

Minamisawa M, Yoshida S, Takai N. Determination of biologically active substances in roasted coffees using a diode-array HPLC system. Analytical Sciences: The International Journal of the Japan Society for Analytical Chemistry 2004;20(2):325-8.

Yoshinari O, Igarashi K. Anti-diabetic effect of trigonelline and nicotinic acid, on KK-A(y) mice. Current Medicinal Chemistry 2010;17(20):2196-202.

Zhou J, Zhou S, Zeng S. Experimental diabetes treated with trigonelline: effect on beta cell and pancreatic oxidative parameters. Fundamental and Clinical Pharmacology 2013;27(3):279-87.

Zhou JY, Zhou SW. Protection of trigonelline on experimental diabetic peripheral neuropathy. Evidence-Based Complementary and Alternative Medicine 2012;2012:164219.

Ballard CG. Advances in the treatment of Alzheimer's disease: benefits of dual cholinesterase inhibition. European Neurology 2002;47(1):64-70.

Satheeshkumar N, Mukherjee PK, Bhadra S, Saha BP. Acetylcholinesterase enzyme inhibitory potential of standardized extract of Trigonella foenum graecum L and its constituents. Phytomedicine 2010;17(3-4):292-5.

Mirzaie M, Khalili M, Kiasalari Z, Roghani M. Neuroprotective and Antiapoptotic Potential of Trigonelline in a Striatal 6-Hydroxydopamine Rat Model of Parkinson’s Disease. Neurophysiology 2016;48(3):176-83.

Zhou JY, Du XH, Zhang Z, Qian GS. Trigonelline Inhibits Inflammation and Protects beta Cells to Prevent Fetal Growth Restriction during Pregnancy in a Mouse Model of Diabetes. Pharmacology 2017;100(5-6):209-17.

Piermartiri TC, Figueiredo CP, Rial D, Duarte FS, Bezerra SC, Mancini G, et al. Atorvastatin prevents hippocampal cell death, neuroinflammation and oxidative stress following amyloid-beta(1-40) administration in mice: evidence for dissociation between cognitive deficits and neuronal damage. Experimental Neurology 2010;226(2):274-84.

Watson C. The Rat Brain in Stereotaxic Coordinates-The New Coronal Set: Academic press; 2004.

Baluchnejadmojarad T, Roghani M. Effect of naringenin on intracerebroventricular streptozotocin-induced cognitive deficits in rat: a behavioral analysis. Pharmacology 2006;78(4):193-7.

Ghofrani S, Joghataei MT, Mohseni S, Baluchnejadmojarad T, Bagheri M, Khamse S, et al. Naringenin improves learning and memory in an Alzheimer's disease rat model: Insights into the underlying mechanisms. European Journal of Pharmacology 2015;764:195-201.

Nasri S, Roghani M, Baluchnejadmojarad T, Balvardi M, Rabani T. Chronic cyanidin-3-glucoside administration improves short-term spatial recognition memory but not passive avoidance learning and memory in streptozotocin-diabetic rats. Phytother Res 2012;26(8):1205-10.

Zarifkar A, Choopani S, Ghasemi R, Naghdi N, Maghsoudi AH, Maghsoudi N, et al. Agmatine prevents LPS-induced spatial memory impairment and hippocampal apoptosis. European Journal of Pharmacology 2010;634(1-3):84-8.

Ellman GL, Courtney KD, Andres V, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology 1961;7(2):88-95.

Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 1976;72(1-2):248-54.

Boncristiano S, Calhoun ME, Kelly PH, Pfeifer M, Bondolfi L, Stalder M, et al. Cholinergic changes in the APP23 transgenic mouse model of cerebral amyloidosis. Journal of Neuroscience 2002;22(8):3234-43.

Yamaguchi Y, Kawashima S. Effects of amyloid-beta-(25-35) on passive avoidance, radial-arm maze learning and choline acetyltransferase activity in the rat. European Journal of Pharmacology 2001;412(3):265-72.

Hardy J, Bogdanovic N, Winblad B, Portelius E, Andreasen N, Cedazo-Minguez A, et al. Pathways to Alzheimer's disease. Journal of Internal Medicine 2014;275(3):296-303.

Samadi A, Estrada M, Perez C, Rodriguez-Franco MI, Iriepa I, Moraleda I, et al. Pyridonepezils, new dual AChE inhibitors as potential drugs for the treatment of Alzheimer's disease: synthesis, biological assessment, and molecular modeling. European Journal of Medicinal Chemistry 2012;57:296-301.

Sugimoto H, Ogura H, Arai Y, Limura Y, Yamanishi Y. Research and development of donepezil hydrochloride, a new type of acetylcholinesterase inhibitor. Japanese Journal of Pharmacology 2002;89(1):7-20.

Ivanov AD TG, Salozhin SV, Markevich VA. NGF but not BDNF overexpression protects hippocampal LTP from beta-amyloid-induced impairment. Neuroscience. 2015;289:114-22.

Brailoiu E HJ, Filipeanu CM, Brailoiu GC, Dun SL, Patel S, Dun NJ. Nicotinic acid adenine dinucleotide phosphate potentiates neurite outgrowth.

. J Biol Chem. 2005;280(7):5646-50. .

French SJ HT, Horner CH, Sofroniew MV, Rattray M. Hippocampal neurotrophin and trk receptor mRNA levels are altered by local administration of nicotine, carbachol and pilocarpine. Brain Res Mol Brain Res. 1999;67(1):124-36.

Qiao D SF, Violin JD, Slotkin TA. Nicotine is a developmental neurotoxicant and neuroprotectant: stage-selective inhibition of DNA synthesis coincident with shielding from effects of chlorpyrifos. Brain Res Dev Brain Res. 2003;147((1-2)):183-90.

Rosato-Siri M CA, Cherubini E. Nicotine-induced enhancement of synaptic plasticity at CA3-CA1 synapses requires GABAergic interneurons in adult anti-NGF mice. J Physiol. 2006;576((Pt 2)):361-77.

Serres F CS. Nicotine regulates SH-SY5Y neuroblastoma cell proliferation through the release of brain-derived neurotrophic factor.

. Brain Research 2006; 1101((1)):36-42.

Bliss TV, Collingridge GL. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 1993;361(6407):31-9.

Kawasaki H, Morooka T, Shimohama S, Kimura J, Hirano T, Gotoh Y, et al. Activation and involvement of p38 mitogen-activated protein kinase in glutamate-induced apoptosis in rat cerebellar granule cells. Journal of Biological Chemistry 1997;272(30):18518-21.

Kim SH, Smith CJ, Van Eldik LJ. Importance of MAPK pathways for microglial pro-inflammatory cytokine IL-1 beta production. Neurobiology of Aging 2004;25(4):431-9.

Thomas GM, Huganir RL. MAPK cascade signalling and synaptic plasticity. Nature Reviews: Neuroscience 2004;5(3):173-83.

Munoz L, Ammit AJ. Targeting p38 MAPK pathway for the treatment of Alzheimer's disease. Neuropharmacology 2010;58(3):561-8.

Origlia N, Bonadonna C, Rosellini A, Leznik E, Arancio O, Yan SS, et al. Microglial receptor for advanced glycation end product-dependent signal pathway drives beta-amyloid-induced synaptic depression and long-term depression impairment in entorhinal cortex. Journal of Neuroscience 2010;30(34):11414-25.

Origlia N, Criscuolo C, Arancio O, Yan SS, Domenici L. RAGE inhibition in microglia prevents ischemia-dependent synaptic dysfunction in an amyloid-enriched environment. Journal of Neuroscience 2014;34(26):8749-60.

Origlia N, Righi M, Capsoni S, Cattaneo A, Fang F, Stern DM, et al. Receptor for advanced glycation end product-dependent activation of p38 mitogen-activated protein kinase contributes to amyloid-beta-mediated cortical synaptic dysfunction. Journal of Neuroscience 2008;28(13):3521-30.

Davies P, Maloney AJ. Selective loss of central cholinergic neurons in Alzheimer's disease. Lancet 1976;2(8000):1403.

Kasa P, Rakonczay Z, Gulya K. The cholinergic system in Alzheimer's disease. Progress in Neurobiology 1997;52(6):511-35.

Gaur V, Bodhankar SL, Mohan V, Thakurdesai PA. Neurobehavioral assessment of hydroalcoholic extract of Trigonella foenum-graecum seeds in rodent models of Parkinson's disease. Pharmaceutical Biology 2013;51(5):550-7.

Orhan I, Naz Q, Kartal M, Tosun F, Sener B, Choudhary MI. In vitro anticholinesterase activity of various alkaloids. Zeitschrift für Naturforschung. Teil C: Biochemie, Biophysik, Biologie, Virologie 2007;62(9-10):684-8.

Published
2019-01-12
How to Cite
1.
Fahanik-Babaei J, Baluchnejadmojarad T, Nikbakht F, Roghani M. Trigonelline Ameliorates Learning and Memory and Synaptic Plasticity Impairment in Intrahippocampal Amyloid Beta (1-40) Rat Model of Alzheimer’s Disease. Acta Med Iran. 56(10):625-634.
Section
Articles