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Abstract- Anemia, characterized by a deficiency in red blood cells or their oxygen-carrying capacity, is a 

prevalent condition with significant health impacts. This study utilizes a bioinformatics approach to identify 

key proteins involved in anemia, leveraging multiple centrality metrics within the anemia protein interaction 

network to uncover potential therapeutic targets. By analyzing genomic and proteomic data, we identified 

critical proteins using centrality metrics, including Degree, Closeness, Betweenness, and Radiality. The study 

focused on five key proteins: GAPDH, EEF2, TPI1, ACO1, and RPS13. These proteins were assessed for their 

roles in cellular processes related to anemia. Our findings highlight GAPDH's multifunctional roles in 

glycolysis and iron homeostasis, EEF2's regulation of protein synthesis under stress, TPI1's crucial function in 

glycolysis and its link to hemolytic anemia, ACO1's dual role in the TCA cycle and iron regulation, and RPS13's 

importance in protein synthesis and erythropoiesis. Each protein was identified as a significant node within the 

network, indicating its potential as a biomarker and therapeutic target. The integration of genomic, proteomic, 

and clinical data revealed that these proteins play pivotal roles in the molecular mechanisms underlying anemia. 

GAPDH interacts with iron-regulatory proteins, EEF2 modulates protein synthesis, TPI1 mutations lead to 

hemolytic anemia, ACO1 regulates iron homeostasis and is linked to sideroblastic anemia, and RPS13 

contributes to erythropoiesis. This study explores how specific proteins may contribute to the development and 

progression of anemia. Rather than reinforcing existing models, it introduces fresh biological clues that could 

reshape how clinicians interpret and treat this condition. These findings point toward personalized treatment 

options and offer a more refined lens for evaluating patient needs.  

© 2025 Tehran University of Medical Sciences. All rights reserved.  
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Introduction 
 

Anemia poses a widespread challenge to global 

health, impacting vast populations and contributing to 

serious illness and premature death. (1). Characterized by 

a reduction in red blood cells or hemoglobin levels, 

anemia impairs the blood's oxygen-carrying capacity. 

This condition arises from various etiologies, including 

nutritional deficiencies, chronic diseases, genetic 

disorders, and infections, reflecting its multifactorial 

nature (2). 

Recent advancements in molecular biology have 

highlighted the role of moonlighting proteins in various 

biological processes, including those related to anemia 

(3). Moonlighting proteins are multifunctional proteins 

that perform two or more distinct biological functions 

within a single polypeptide chain (4). Certain proteins 

perform surprising and unrelated tasks beyond their 

conventional biological roles, a phenomenon known as 

“moonlighting.” Their ability to shift functions stems 

from their flexible structures, which enable them to take 

on diverse functional capacities, including enzymatic 
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processes, cellular structural organization, and 

modulation of signaling pathways, all shaped by their 

surroundings. These adaptive changes are influenced by 

conditions like protein modifications after synthesis, 

interactions with other molecules, or shifts in the cellular 

surroundings (5,6). 

The function a moonlighting protein performs is 

determined by its biological surroundings. Factors such 

as its spatial distribution within the cell and fluctuations 

in external conditions influence the range of roles it can 

adopt. Moonlighting proteins can exhibit different 

functions in various cellular tissues (5). The presence of 

these proteins across a wide array of organisms over 

evolutionary time points to their functional flexibility as 

a trait preserved by natural selection. The ability to 

perform multiple functions with a single gene product is 

advantageous for organisms, enhancing energy efficiency 

and facilitating rapid adaptation to changing 

environments (7). Moonlighting proteins can function as 

dynamic signaling mediators, integrating distinct 

biological routes and enabling communication between 

diverse cellular mechanisms. They play crucial roles in 

several cellular processes, including metabolic pathways, 

structural integrity of cells or organelles, regulation of 

various cellular processes, and cellular stress response 

(8). 

Studies have shown that moonlighting proteins affect 

multiple aspects of hematopoiesis and iron metabolism, 

which are critical in the pathogenesis of anemia (9). For 

instance, specific moonlighting proteins regulate 

hemoglobin synthesis. Proteins primarily functioning in 

metabolic pathways may interact with transcription 

factors or signaling pathways that regulate genes involved 

in hemoglobin production, and disruption in these 

pathways can lead to anemia (10). Moreover, 

moonlighting proteins are involved in iron metabolism, 

essential for red blood cell production (8). While ferritin 

is best known for storing iron within cells, it also plays an 

active role in modulating cellular signaling pathways and 

influencing the transcriptional activity of genes involved 

in iron balance. Disruption in these regulatory 

mechanisms can contribute to iron-deficiency anemia 

(11). 

Moonlighting proteins extend their influence into 

immune regulation and inflammatory signaling, 

assuming functions not traditionally associated with their 

primary roles. Chronic inflammation can lead to anemia 

of chronic disease, where the body sequesters iron from 

pathogens, reducing its availability for red blood cell 

production. Proteins that modulate inflammatory 

responses indirectly affect the development of anemia 

(12). Moonlighting proteins are also directly involved in 

erythropoiesis (13). Proteins involved in cellular 

metabolism may influence the proliferation and 

differentiation of erythroid progenitor cells, and 

deficiencies in these proteins can impair red blood cell 

production, leading to anemia (14). 

Furthermore, genetic mutations affecting 

moonlighting proteins can result in hereditary forms of 

anemia. Mutations in proteins with dual roles in 

metabolism and erythropoiesis disrupt normal blood cell 

formation (15). Compared to previous research, our study 

delves deeper into the intricate roles of moonlighting 

proteins in anemia. Prior studies have primarily focused 

on individual functions of these proteins in specific 

pathways (16). However, our research will 

comprehensively analyze their multifunctional roles and 

the interplay among them in anemia. This study draws 

upon core concepts from distinct yet interconnected 

domains—such as hemoglobin production, iron balance 

mechanisms, cellular development within the erythroid 

lineage, and patterns of genetic variation—to construct a 

unified analytical perspective. This synthesis aims to 

elucidate the complex biological factors underlying 

anemia in a comprehensive, structured manner (15,17). 

This study aims to determine interactions among 

candidate proteins in anemia using bioinformatics 

methods and to predict crosstalk pathways in the 

constructed networks to generate hypotheses. We propose 

that the expression profiles of specific candidate proteins 

within the anemia-associated functional network diverge 

significantly from those observed in physiologically 

normal individuals. In addition, we hypothesize that the 

structural configurations and functional dynamics of the 

regulatory proteins HAMP and EPO within their 

associated molecular networks exhibit notable divergence 

in individuals with anemia compared with those with 

normal physiological profiles. By addressing the gap in 

understanding the complex roles of moonlighting 

proteins in anemia, this research employs advanced 

bioinformatics and systems biology approaches to 

elucidate the interactions and pathways underpinning 

these proteins' multifunctionality. The outcomes of this 

investigation are intended to shed light on prospective 

molecular intervention points and support the 

advancement of more efficient therapeutic strategies for 

anemia management. 

 

Materials and Methods 

 

This analytical study examined expression data for 

moonlighting proteins in patients with anemia compared 
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with a control group of healthy individuals. The initial 

data for network construction were extracted from 

various bioinformatics databases, including MoonProt, 

NCBI, SWISSprot, and Diseasome, using samples from 

both anemic patients and healthy individuals. The data 

recorded in these bioinformatics databases serve as the 

gold standard, encompassing all verified protein 

expression data from healthy individuals and anemia 

patients. 

To identify candidate proteins involved in anemia, a 

comprehensive review and database search were 

conducted across MoonProt, NCBI, GeneCards, Swiss-

Prot, and Diseasome. 

Proteins implicated in the disease were selected based 

on evidence from at least one of the following methods: 

in vivo, in vitro, or in silico studies. These proteins were 

then considered as candidate proteins. Expression data 

were collected from these bioinformatics databases, and 

the expression data from both groups were standardized 

against the control group to compare the results and test 

the study hypotheses. 

Subsequently, an interaction network was constructed 

from expression data for candidate proteins and human 

moonlighting proteins in both the patient and control 

groups. The networks were plotted separately for each 

group in MATLAB. Structural parameters of the 

expression data networks were calculated and compared 

between the two groups. Statistically significant 

parameters can be proposed as potential biomarkers. 

All statistical calculations in this study were 

performed using R and MATLAB software. Data analysis 

employed advanced descriptive and inferential statistical 

methods, as well as machine learning techniques based on 

advanced bioinformatics algorithms. These methods were 

used to compute network features for network data 

analysis and to identify biomarkers associated with the 

network's structural characteristics. 

By employing these methodologies, this study aims to 

elucidate the complex roles of moonlighting proteins in 

anemia, providing insights into potential therapeutic 

targets and contributing to the development of effective 

treatments. 

This analytical study aims to investigate the network 

relationships of proteins involved in anemia and 

moonlighting proteins, and to calculate essential 

parameters. Initially, text mining methods were employed 

to identify proteins implicated in anemia. The association 

of these proteins with anemia was confirmed using at 

least one of the following methods: in vivo, in vitro, and 

in silico. 

First, the most probable genes encoding these proteins 

were identified using bioinformatics databases such as 

MoonProt, NCBI, SWISSProt, and Diseasome. The set of 

target proteins involved in anemia was then ranked using 

the Gene-Disease Association (GDA) score. The GDA 

score reflects the strength of the association between each 

gene and anemia, with higher scores indicating a stronger 

relationship. These scores were calculated based on 

multiple sources of evidence, including in vivo, in vitro, 

and in silico studies, as well as literature references. 

Formally, the GDA score is defined as: 

 

GDA=C+M+I+LGDA = C + M + I + L 

Where: 

 C=0.6C= 0.6 if Nsourcesi>2N_{\text{sources} 

 (18)_i} > 2 

 C=0.5C=0.5 if 

Nsourcesi=2N_{\text{sources}_i} = 2 

 C=0.3C=0.3 if 

Nsourcesi=1N_{\text{sources}_i} = 1 

 C=0C=0 otherwise 

 

Here, NsourcesiN_{\text{sources}_i} represents the 

number of specialized sources confirming the association 

of the gene with the target disease (CTD, UNIPROT, 

PSYGENET, CGL, GENOMICS, CLINGEN, 

ORPHANET). 

 

 M=0.2M=0.2 if 

Nsourcesi>0N_{\text{sources}_i}>0 in 

databases like CTD, MGD, RGD 

 M=0M = 0 otherwise 

 I=0.1I=0.1 if Nsourcesi>0N_{\text{sources}_i} 

> 0 in databases like HPO, CLINVAR, 

GWASCAT, GWASDB 

 I=0I=0 otherwise 

 L=0.1L=0.1 if Npubs>9N_{\text{pubs}} > 9 

 L=Npubs×0.01L=N_{\text{pubs}} \times 0.01 

if Npubs<9N_{\text{pubs}} < 9 

 

 

NpubsN_{\text{pubs}} refers to the number of 

publications confirming the gene-disease association in 

databases like BEFREE, LHGDN. After calculating the 

GDA score, the candidate genes for anemia were ranked 

as shown in Table 1 (19,20). 
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Table 1. GDA Scores for anemia protein interaction network  

Gene Name GDA score 

HBA2 1.0 

HBA1 1.0 

HBB 0.95 

HAMP 0.95 

EPO 0.90 

ITPA 0.90 

CSF2 0.85 

SLC11A2 0.85 

CSF3 0.85 

TF 0.85 

 

 

In the next step, some of the moonlighting proteins in 

human samples were extracted from the MoonProt 

database. These proteins are multifunctional and play 

diverse roles in cellular processes, making them 

significant in the study of diseases such as anemia. Table 

2 lists representative examples of these moonlighting 

proteins identified in human samples, highlighting their 

diverse functional roles and relevance to anemia research.

 

Table 2. Some of the moonlighting proteins in 

human samples 

Protein Name Index 

1-Cys Peroxiredoxin 1 

Hsp60 2 

Enolase 3 

Lactose Synthase 4 

Delta-Aminolevulinic Acid 

Dehydratase 
5 

Leukotriene A-4 Hydrolase 6 

Lysyl Hydroxylase 7 

 

 

Then, using the Gephi platform, we constructed the 

interaction network between the candidate proteins and 

moonlighting proteins. We determined the interaction 

network structure among candidate proteins and 

calculated network centrality measures to identify 

essential proteins. In this network, edge weights were 

determined based on the expression levels of the 

corresponding proteins (21). 

In the constructed interaction network (Figure 1). 

Each node represents a protein, and the edges denote 

physical or functional interactions, identified through at 

least one of the methods: in vivo, in vitro, or in silico 

studies, as well as genes computed based on the GDA 

criterion (Table 1). 

Identification of essential nodes 

In the context of interaction networks, the term "hub" 

describes nodes that are essential according to one of the 

network centrality measures. In biological networks, 

selecting hub nodes is crucial for identifying influential 

components that significantly affect the network. These 

hub nodes can be pivotal for understanding the network's 

structure and dynamics. By pinpointing these critical 

nodes, researchers can identify key genes or proteins 

(Essentials) within the network that could serve as 

biomarkers. These biomarkers are invaluable for 

diagnosing or treating diseases. By analyzing structural 

centrality measures, we aim to identify essential nodes in 

the protein interaction network, thereby providing 

insights that can aid in the development of effective 

therapeutic strategies (18,22). 
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Results 

Structural parameters of the network 

Maximum neighborhood component (MNC) 

Each node, such as node aa, has several neighbors 

directly connected to it, denoted as N(a)N(a). The MNC 

score for node aa is defined as the size of the largest 

connected component to which node aa belongs. Based 

on this parameter, the highest MNC scores are attributed 

to the following biomarkers (Table 3). 

The interaction network is visualized as follows: 

 

 
Figure 1. Interaction network of candidate proteins and moonlighting proteins in anemia. This figure illustrates the interaction network 

constructed between candidate proteins and moonlighting proteins, identified in patients with anemia and compared to a control group of healthy 

individuals. Each node represents a protein, and the edges depict physical or functional interactions, determined through in vivo, in vitro, or in silico 

studies. The network visualization was created using Gephi, with edge weights based on the expression levels of the corresponding proteins. 

Structural centrality measures were computed to identify essential nodes, which could serve as potential biomarkers for anemia diagnosis and 

treatment 

 

 

 

Table 3. MNC scores for anemia protein 

interaction network including moonlighting 

proteins 

Biomarker Rank 

GAPDH 1 

PGK1 2 

TPI1 3 

EEF2 4 

ACO1 5 

RPS3 6 

RPS13 7 

RPS14 8 

HSPD1 9 

KARS1 10 
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Degree centrality 

Degree centrality is defined as the number of edges 

connected to a node. Based on this criterion, the most 

influential biomarkers in the anemia protein interaction 

network, including moonlighting proteins, are as follows 

(Table 4): 

The interaction network for these 10 components with 

the highest degree scores is visualized as "(Figure 2) 

 

 
Figure 2. Interaction network of candidate proteins and moonlighting proteins in anemia 

This figure illustrates the interaction network constructed between candidate proteins and moonlighting proteins, identified in patients with 

anemia and compared to a control group of healthy individuals. Each node represents a protein, and the edges depict physical or functional 

interactions, determined through in vivo, in vitro, or in silico studies. The network visualization was created using Gephi, with edge weights based on 

the expression levels of the corresponding proteins. Structural centrality measures were computed to identify essential nodes, which could serve as 

potential biomarkers for anemia diagnosis and treatment 

 

 

Closeness centrality 

Closeness centrality is defined as the sum of the 

shortest paths from a node to all other nodes in a 

connected network. This measure is crucial for 

identifying biomarkers in biological networks, as it 

indicates how close a protein is to all other proteins. 

Based on this criterion, the most significant biomarkers in 

the anemia protein interaction network, including 

moonlighting proteins, are as follows (Table 5): 

      The interaction network for anemia based on 

closeness centrality is visualized as follows (Figure 4). 

 

Table 4. Degree scores for anemia protein 

interaction network including moonlighting 

proteins 

Biomarker Rank 

GAPDH 1 

EEF2 2 

PGK1 3 

TPI1 4 

ACO1 5 

RPS3 6 

RPS13 7 

HSPD1 8 

RPS14 9 

KARS1 10 
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Figure 3. Interaction network of Top 10 biomarkers by Degree Centrality. This figure illustrates the network structure of the top 10 biomarkers with 

the highest degree scores, highlighting their central roles and interconnections within the anemia protein interaction network 

 

 

Radiality 

Radiality measures a node's proximity to all other 

nodes in its neighborhood, identifying the nodes with the 

shortest paths to others. Based on this criterion, the 

highest radiality scores for proteins in the anemia 

network, including moonlighting proteins, are as follows 

(Table 6): 

The interaction network for anemia based on radiality 

is visualized as follows (Figure 5) 

 

Betweenness centrality 

Betweenness centrality measures the extent to which 

a node lies on the shortest path between other nodes in the 

network. Nodes with high betweenness centrality are 

crucial for information transfer within biological 

networks. The removal of these nodes could disrupt the 

overall network communication. Based on this criterion, 

the highest betweenness scores for proteins in the anemia 

network, including moonlighting proteins, are as follows 

(Table 7): 

The interaction network for anemia based on 

betweenness centrality is visualized as follows (Figure 6): 

 

Table 5. Closeness scores for anemia protein 

interaction network including moonlighting 

proteins 

Biomarker Rank 

GAPDH 1 

EEF2 2 

PGK1 3 

TPI1 4 

RPS13 5 

ACO1 6 

RPS3 7 

RPS14 8 

HSPD1 9 

YBX1 10 
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Figure 4. Anemia interaction network based on closeness centrality. This figure illustrates the network structure of the top 

biomarkers ranked by closeness centrality, highlighting their central roles and interconnections within the anemia protein interaction 

network. This analysis helps identify key proteins crucial to maintaining the network's integrity and function, making them potential 

targets for therapeutic intervention 

 

Table 6. Radiality scores for anemia protein interaction 

network including moonlighting proteins 

Biomarker Rank 

GAPDH 1 

EEF2 2 

YBX1 3 

PGK1 4 

TPI1 5 

RPS13 6 

MRPS7 7 

RPS14 8 

RPS3 9 

ACO1 10 

 

Table 7. Betweenness scores for anemia protein 

interaction network including moonlighting proteins 

Biomarker Rank 

GAPDH 1 

EEF2 2 

YBX1 3 

MAPK1 4 

ACO1 5 

ATF2 6 

HSPD1 7 

PARP1 8 

MIRPL13 9 

CSF2 10 
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Figure 5. The interaction network for anemia based on radiality is visualized 

 

 
Figure 6. Anemia interaction network based on betweenness centrality. This figure highlights the network structure of the top biomarkers ranked 

by betweenness centrality, emphasizing their pivotal roles and interconnections within the anemia protein interaction network. This analysis is crucial 

for identifying key proteins that maintain the network's integrity and function, making them potential targets for therapeutic intervention 
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Based on network analysis of candidate proteins in 

anemia, using five centrality metrics (Maximum 

Neighborhood Component, Degree, Betweenness, 

Closeness, and Radiality), GAPDH, EEF2, TPI1, ACO1, 

and RPS13 were identified as having the highest 

consistency across these metrics. 

 GAPDH (Glyceraldehyde-3-phosphate 

dehydrogenase): Located on chromosome 

12p13.31, it is predominantly expressed in 

skeletal muscle. Diseases related to this gene 

include hemolytic anemia due to 

triosephosphate isomerase deficiency. GAPDH 

is involved in DNA synthesis inhibition, 

chemotherapy, and acts as a strong pro-apoptotic 

anticancer agent by activating caspase 3. 

 EEF2 (Eukaryotic translation elongation 

factor 2): Found on chromosome 19p13.3, this 

protein is highly expressed in lymph nodes. 

Related diseases include anemia, sideroblastic 

anemia, and spinocerebellar ataxia. EEF2 

functions as a high-affinity adenosine receptor 

agonist. 

 TPI1 (Triosephosphate isomerase 1): Located 

on chromosome 12p13.31, TPI1 is highly 

expressed in blood. It is associated with 

hemolytic anemias and is a key component in the 

synthesis and maintenance of cell membranes. 

 ACO1 (Aconitase 1): Found on chromosome 

9p21.1, this protein is predominantly expressed 

in blood. It is related to hemochromatosis and 

functions as an antioxidant and mucolytic agent. 

 RPS13 (Ribosomal protein S13): Located on 

chromosome 11p15.1, it is highly expressed in 

blood and associated with hemolytic anemia due 

to triosephosphate isomerase deficiency. It 

functions as an antioxidant and mucolytic agent. 

These proteins were identified as essential due to their 

high repetition and confirmation across the five centrality 

metrics, making them significant in the study of anemia. 

Their roles and mechanisms provide valuable insights 

into potential therapeutic targets for anemia. 

 

Table 8. Common proposed essential proteins based on 5 bioinformatics metrics. This table presents the 

essential proteins identified using five centrality metrics in the bioinformatics analysis of the anemia protein 

interaction network. The table includes the protein names, their full names, chromosomal locations, tissues 

with the highest expression, associated diseases, and the mechanisms involved 

Protein 

Name 
Full Name Chromosome 

Highest 

Expression 
Associated Diseases Mechanism Ref 

GAPDH 
Glyceraldehyde-3-

Phosphate 

Dehydrogenase 

12p13.31 
Skeletal 

Muscle 

Hemolytic anemia due 
to triosephosphate 

isomerase deficiency 

Inhibition of DNA 

synthesis, chemotherapy, 
strong pro-apoptotic 

anticancer agent; activates 

caspase 3 

(23) 

EEF2 
Eukaryotic 

Translation 
Elongation Factor 2 

19p13.3 
Lymph 

Nodes 

Anemia, sideroblastic 

anemia, spinocerebellar 
ataxia 

High-affinity adenosine 

receptor agonist 
(24,25) 

TPI1 
Triosephosphate 

Isomerase 1 
12p13.31 Blood Hemolytic anemias 

Key component in the 

synthesis and maintenance 
of cell membranes 

(26,27) 

ACO1 Aconitase 1 9p21.1 Blood Hemochromatosis 
Antioxidant; mucolytic 

agent 
(28,29) 

RPS13 
Ribosomal Protein 

S13 
11p15.1 Blood 

Hemolytic anemia due 

to triosephosphate 

isomerase deficiency 

Antioxidant; mucolytic 
agent 

(30,31) 

 

 

Discussion 
 

Anemia is characterized by a reduction in the number 

or quality of red blood cells, leading to decreased oxygen 

transport in the body. Leveraging computational 

methodologies, this study advances the molecular 

dissection of anemia by uncovering novel regulatory 

patterns and diagnostic indicators. Integrating diverse 

biological datasets enables a refined exploration of 

anemia’s molecular determinants, fostering the 

development of tailored therapeutic frameworks 

grounded in precision medicine. Bioinformatics uses 

computational tools to analyze biological data, aiding the 

study of complex diseases such as anemia (32,33). The 

convergence of multi-omic datasets enables a more 

refined dissection of anemia’s molecular etiology, laying 

the groundwork for bespoke therapeutic strategies 

aligned with the principles of precision medicine. This 

precision-driven approach informs individualized 

treatment strategies by aligning molecular diagnostics 



Bioinformatics discovery of anemia protein networks 

340    Acta Medica Iranica, Vol. 63, No. 6 (2025) 

with targeted therapeutic interventions. 

Additionally, analyzing protein expression profiles in 

anemic patients can reveal biomarkers indicating disease 

severity or response to treatment (34). Bioinformatics 

integrates proteomic data with clinical outcomes, 

enhancing diagnostic accuracy. Furthermore, it enables 

researchers to explore metabolic and signaling pathways 

involved in erythropoiesis (red blood cell production), 

thereby identifying new therapeutic targets for treating 

anemia (35). 

The investigation focused on the transcriptional 

landscapes of anemia-associated proteins, underscoring 

the critical function of bioinformatic methodologies in 

their systematic identification and molecular 

characterization. Using resources like the GeneCards 

database, this research integrates genomic, proteomic, 

and clinical data to provide a comprehensive 

understanding of anemia's molecular mechanisms. This 

study employs computational analysis to investigate 

molecular determinants of anemia, demonstrating how 

bioinformatics enables the systematic identification and 

functional annotation of relevant proteins. By 

harmonizing multidimensional biological datasets, this 

framework deepens mechanistic comprehension of 

anemia and fosters the emergence of individualized 

therapeutic models rooted in precision medicine. 

 

GAPDH 

GAPDH (Glyceraldehyde-3-phosphate 

dehydrogenase), classically recognized for its catalytic 

function in the glycolytic conversion of glyceraldehyde-

3-phosphate through oxidative phosphorylation, was 

identified in this study as a key integrative component 

within the anemia-associated protein interaction network. 

Its centrality implies a potentially expansive role in the 

molecular orchestration of iron-related 

pathophysiological processes. 

 GAPDH interacts with the iron regulatory protein 

IRP2, impacting iron metabolism, which is crucial 

because iron deficiency is a common cause of anemia 

(36,37). This molecular association may exert regulatory 

control over the transcription of genes involved in iron 

assimilation, intracellular depot formation, and metabolic 

deployment, potentially shaping the pathophysiology of 

iron-deficiency anemia. GAPDH has also been 

implicated in the modulation of fetal hemoglobin (HbF) 

synthesis, a process of clinical relevance given HbF’s 

capacity to attenuate the pathological effects associated 

with sickle cell disease. Modulating GAPDH activity 

could thus have therapeutic potential in managing sickle 

cell disease. The existing literature reinforces the present 

observations by demonstrating GAPDH’s involvement in 

diverse regulatory pathways, thereby supporting its 

multifaceted role in cellular control mechanisms. 

In our analysis, GAPDH emerged as a significant 

biomarker based on its high centrality metrics, suggesting 

an essential role in the network. Its high expression in 

skeletal muscle and its association with hemolytic anemia 

underscore its importance. While GAPDH's primary role 

lies in glycolysis, emerging evidence suggests broader 

regulatory roles in anemia (38). This research expands the 

functional profile of GAPDH, highlighting its relevance 

beyond traditional roles and proposing it as a viable 

molecular target for therapeutic intervention. The insights 

gained offer a refined understanding of GAPDH’s 

involvement in anemic pathology and inform the 

development of more effective treatment modalities. 

 

EEF2 

Eukaryotic Translation Elongation Factor 2 (EEF2) 

plays a critical role in protein synthesis by facilitating the 

translocation of tRNA and mRNA during translation. 

Through integrative network analysis, EEF2 emerged as 

a pivotal node within the anemia-associated protein 

interaction landscape, as determined by multiple 

centrality metrics. This study harnesses computational 

genomics to pinpoint genetic disruptions linked to distinct 

anemic conditions, such as sickle cell disease and 

thalassemia. By decoding these molecular aberrations, 

the approach enables phenotype-specific stratification 

and informs the design of tailored therapeutic regimens 

within a precision medicine framework. 

Recent studies have begun exploring the potential link 

between EEF2 and various forms of anemia, driven by 

EEF2K regulation. In response to metabolic stress, 

eukaryotic elongation factor 2 kinase (EEF2K) becomes 

activated and phosphorylates EEF2, disrupting its role in 

ribosomal translocation during the elongation phase of 

translation. This regulatory mechanism imposes a 

translational checkpoint that limits protein synthesis, 

conserving cellular energy and potentially impairing red 

blood cell production under stress-induced hematopoietic 

conditions. This translational attenuation may impair 

erythropoietic output by limiting the biosynthetic 

capacity required for red blood cell production, 

particularly during stress-induced hematopoietic 

responses. Given that erythropoiesis is a highly energy-

dependent process, disruption of translation by EEF2K 

activation can contribute to anemia  

Additionally, EEF2K has a role in regulating immune 

responses. Inflammatory conditions can lead to anemia of 

chronic disease (ACD), where red blood cell production 
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is inhibited. Modulating EEF2K activity may affect the 

inflammatory response, influencing the development of 

ACD.  

Our findings align with previous research, 

emphasizing EEF2's importance in protein synthesis and 

its regulation under stress. The identification of EEF2 as 

a key node in the anemia protein network highlights its 

potential as a therapeutic target. Understanding the 

effects of EEF2K inhibitors, such as A484954, on EEF2 

activity could provide insights into their potential impact 

on anemia, especially in patients with comorbid 

cardiovascular issues. These findings enhance our 

understanding of EEF2's role in anemia and suggest new 

avenues for therapeutic intervention. 

 

TPI1 

Triosephosphate Isomerase 1 (TPI1) is an essential 

enzyme in the glycolytic pathway, responsible for the 

interconversion of dihydroxyacetone phosphate and 

glyceraldehyde 3-phosphate. Our study identified TPI1 as 

a significant protein in the anemia protein interaction 

network, highlighting its role based on multiple centrality 

metrics. This finding underscores TPI1's critical function 

in red blood cell metabolism and its potential impact on 

anemia (39). 

TPI1 deficiency is primarily associated with 

congenital hemolytic anemia. This condition arises from 

reduced enzyme activity, leading to the accumulation of 

dihydroxyacetone phosphate (DHAP) and subsequent 

metabolic disturbances in red blood cells (39). Impaired 

glycolytic function reduces energy production, which is 

crucial for maintaining red blood cell integrity and 

lifespan. Consequently, patients with TPI1 deficiency 

experience hemolysis and reduced red blood cell counts, 

contributing to anemia (40). 

Metabolic stress activates EEF2K, leading to EEF2 

phosphorylation and disruption of its role in ribosomal 

translocation, thereby dampening protein synthesis. This 

post-translational modification impairs its role in 

coordinating ribosomal movement during peptide chain 

elongation, thereby imposing a translational restraint that 

conserves cellular energy and may disrupt erythroid 

biosynthesis under stress-adaptive conditions. This 

stress-responsive modulation of translational machinery 

imposes a biosynthetic constraint that may compromise 

erythroid lineage maturation and red blood cell output. 

The severity of the disease can lead to significant 

complications, and most affected individuals do not 

survive beyond early childhood without intervention (41). 

Our network-based analysis identified TPI1 as a key 

regulatory node within the anemia-associated protein 

interaction framework, reinforcing its established role in 

sustaining erythrocyte integrity and its pathogenic 

relevance to hemolytic anemia. The Glu104Asp variant, 

the most prevalent mutation linked to TPI1 deficiency, 

accounts for the majority of documented cases and is 

strongly associated with severe clinical outcomes. Other 

mutations like E105D have also been identified, 

contributing to the phenotypic diversity observed in 

patients. Diagnostic evaluation of TPI1 deficiency relies 

on a combination of molecular and biochemical 

approaches, particularly in individuals exhibiting 

unexplained hemolytic anemia and neurological 

impairments. Comprehensive diagnosis of TPI1 

deficiency integrates molecular screening for pathogenic 

variants with functional assays quantifying enzymatic 

activity in red blood cells. This integrative diagnostic 

strategy enhances clinical accuracy by linking genotypic 

alterations with measurable enzymatic deficits in 

erythrocytes. Elevated concentrations of 

dihydroxyacetone phosphate (DHAP) serve as an 

additional biochemical hallmark. As no curative therapy 

currently exists, clinical management centers on 

supportive interventions, including transfusion-based 

correction of anemia and treatment of secondary 

complications, such as recurrent infections. Our findings 

contribute to this understanding, highlighting the need to 

recognize TPI1's role in anemia for better diagnosis and 

management (42). 

 

ACO1 

ACO1 encodes a bifunctional cytosolic protein that 

operates as both a metabolic enzyme within the 

tricarboxylic acid (TCA) cycle and a post-transcriptional 

regulator of iron homeostasis. Under iron-replete 

conditions, ACO1 incorporates a [4Fe-4S] cluster and 

functions enzymatically as aconitase, catalyzing the 

isomerization of citrate to isocitrate. Conversely, in iron-

deficient states, the protein adopts an RNA-binding 

conformation, interacting with iron-responsive elements 

(IREs) on transcripts encoding ferritin and the transferrin 

receptor to modulate iron uptake and storage. Network 

analysis from our study positioned ACO1 as a central 

node within the anemia-associated protein interaction 

landscape, underscoring its pivotal role in coordinating 

iron metabolism with erythropoietic demand (43,44). 

ACO1 is pivotal in maintaining iron homeostasis, and 

mutations or dysregulation can lead to iron deficiency 

anemia. It also plays a role in sideroblastic anemia, 

characterized by ringed sideroblasts in bone marrow due 

to disruptions in iron metabolism, leading to ineffective 

erythropoiesis. 
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Furthermore, ACO1 is involved in anemia of chronic 

disease (ACD), often associated with inflammatory 

conditions. Inflammatory cytokines can modulate ACO1 

activity, altering iron distribution and contributing to 

ACD development (45). Our findings support previous 

research, which has established ACO1's dual role as both 

a metabolic enzyme and an iron regulator. Understanding 

ACO1's function highlights its potential as a therapeutic 

target. Modulating ACO1 activity could improve iron 

availability for red blood cell production, offering new 

avenues for treating various forms of anemia (46). 

 

RPS13 

RPS13, or Ribosomal Protein S13, is a component of 

the ribosome essential for protein synthesis in cells. 

Although the direct relationship between RPS13 and 

anemia is not well documented, understanding the 

broader context of ribosomal proteins and their roles in 

cellular function can provide insights into potential 

connections. Ribosomal proteins, such as RPS13, play 

indispensable roles in erythropoiesis by supporting the 

translational demands of proliferating erythroid 

precursors. As integral components of the ribosomal 

machinery, they ensure efficient protein synthesis, which 

is required for hemoglobin production and cellular 

maturation during red blood cell development. 

Disruptions in ribosomal protein function can lead to 

various forms of anemia, particularly those associated 

with ineffective erythropoiesis (47). 

Conditions such as Diamond-Blackfan anemia (DBA) 

are linked to mutations in ribosomal protein genes, 

leading to reduced red blood cell production (48). 

Although RPS13 is not directly involved in DBA, its role 

in ribosome assembly and function suggests that 

abnormalities in ribosomal proteins can contribute to 

anemia. Ribosomal proteins also play a role in the cellular 

response to erythropoietin, a hormone that stimulates red 

blood cell production. Compromise in ribosomal 

architecture can attenuate cellular responsiveness to 

erythropoietin, thereby disrupting the proliferation and 

differentiation of erythroid progenitors. This translational 

inefficiency may culminate in suboptimal red blood cell 

formation and contribute to an anemic phenotype (49).  

Our study identified RPS13 as a significant protein in 

the anemia protein interaction network, based on multiple 

centrality metrics, emphasizing its role in cellular 

processes. While specific studies directly linking RPS13 

to anemia are limited, several indirect connections can be 

considered. Anemia, especially in conditions like sickle 

cell disease, is often exacerbated by oxidative stress and 

inflammation (50). RPS13 may influence the stress-

adaptive behavior of erythroid progenitors by modulating 

ribosomal performance under adverse physiological 

conditions. In parallel, folate plays a central role in 

nucleotide biosynthesis and cell cycle fidelity; its 

insufficiency disrupts DNA replication, impairs 

erythroblast proliferation, and culminates in 

megaloblastic anemia. Although RPS13 does not directly 

interact with folate metabolism, any ribosomal 

dysfunction can impact the synthesis of proteins involved 

in folate utilization, thereby affecting erythropoiesis (51). 

This study pinpointed GAPDH, EEF2, TPI1, ACO1, 

and RPS13 as pivotal molecular nodes within the protein 

interaction landscape of anemia, each exerting 

specialized roles in regulating red blood cell formation 

and maintaining iron balance. By integrating multi-source 

genomic and proteomic data, we revealed how these 

proteins influence red blood cell formation, stress-

adaptive translation, and iron-responsive signaling. Their 

network centrality and biological relevance suggest 

strong potential as clinical biomarkers for anemia 

subtyping and for monitoring anemia progression. 

Moreover, these findings provide a foundation for 

developing targeted therapies, such as small-molecule 

modulators or gene-based interventions, that could 

restore erythroid function or correct metabolic 

imbalances. The study’s systems-level approach bridges 

molecular insight with translational utility, paving the 

way for precision diagnostics and personalized treatment 

strategies in anemia management. 
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