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Abstract- Anemia, characterized by a deficiency in red blood cells or their oxygen-carrying capacity, is a
prevalent condition with significant health impacts. This study utilizes a bioinformatics approach to identify
key proteins involved in anemia, leveraging multiple centrality metrics within the anemia protein interaction
network to uncover potential therapeutic targets. By analyzing genomic and proteomic data, we identified
critical proteins using centrality metrics, including Degree, Closeness, Betweenness, and Radiality. The study
focused on five key proteins: GAPDH, EEF2, TPI1, ACO1, and RPS13. These proteins were assessed for their
roles in cellular processes related to anemia. Our findings highlight GAPDH's multifunctional roles in
glycolysis and iron homeostasis, EEF2's regulation of protein synthesis under stress, TPI1's crucial function in
glycolysis and its link to hemolytic anemia, ACO1's dual role in the TCA cycle and iron regulation, and RPS13's
importance in protein synthesis and erythropoiesis. Each protein was identified as a significant node within the
network, indicating its potential as a biomarker and therapeutic target. The integration of genomic, proteomic,
and clinical data revealed that these proteins play pivotal roles in the molecular mechanisms underlying anemia.
GAPDH interacts with iron-regulatory proteins, EEF2 modulates protein synthesis, TPI1 mutations lead to
hemolytic anemia, ACO1 regulates iron homeostasis and is linked to sideroblastic anemia, and RPS13
contributes to erythropoiesis. This study explores how specific proteins may contribute to the development and
progression of anemia. Rather than reinforcing existing models, it introduces fresh biological clues that could
reshape how clinicians interpret and treat this condition. These findings point toward personalized treatment
options and offer a more refined lens for evaluating patient needs.
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Introduction

Anemia poses a widespread challenge to global
health, impacting vast populations and contributing to
serious illness and premature death. (1). Characterized by
a reduction in red blood cells or hemoglobin levels,
anemia impairs the blood's oxygen-carrying capacity.
This condition arises from various etiologies, including
nutritional  deficiencies, chronic diseases, genetic
disorders, and infections, reflecting its multifactorial
nature (2).

Recent advancements in molecular biology have
highlighted the role of moonlighting proteins in various
biological processes, including those related to anemia
(3). Moonlighting proteins are multifunctional proteins
that perform two or more distinct biological functions
within a single polypeptide chain (4). Certain proteins
perform surprising and unrelated tasks beyond their
conventional biological roles, a phenomenon known as
“moonlighting.” Their ability to shift functions stems
from their flexible structures, which enable them to take
on diverse functional capacities, including enzymatic
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processes, cellular structural organization, and
modulation of signaling pathways, all shaped by their
surroundings. These adaptive changes are influenced by
conditions like protein modifications after synthesis,
interactions with other molecules, or shifts in the cellular
surroundings (5,6).

The function a moonlighting protein performs is
determined by its biological surroundings. Factors such
as its spatial distribution within the cell and fluctuations
in external conditions influence the range of roles it can
adopt. Moonlighting proteins can exhibit different
functions in various cellular tissues (5). The presence of
these proteins across a wide array of organisms over
evolutionary time points to their functional flexibility as
a trait preserved by natural selection. The ability to
perform multiple functions with a single gene product is
advantageous for organisms, enhancing energy efficiency
and facilitating rapid adaptation to changing
environments (7). Moonlighting proteins can function as
dynamic signaling mediators, integrating distinct
biological routes and enabling communication between
diverse cellular mechanisms. They play crucial roles in
several cellular processes, including metabolic pathways,
structural integrity of cells or organelles, regulation of
various cellular processes, and cellular stress response
(8).

Studies have shown that moonlighting proteins affect
multiple aspects of hematopoiesis and iron metabolism,
which are critical in the pathogenesis of anemia (9). For
instance, specific moonlighting proteins regulate
hemoglobin synthesis. Proteins primarily functioning in
metabolic pathways may interact with transcription
factors or signaling pathways that regulate genes involved
in hemoglobin production, and disruption in these
pathways can lead to anemia (10). Moreover,
moonlighting proteins are involved in iron metabolism,
essential for red blood cell production (8). While ferritin
is best known for storing iron within cells, it also plays an
active role in modulating cellular signaling pathways and
influencing the transcriptional activity of genes involved
in iron balance. Disruption in these regulatory
mechanisms can contribute to iron-deficiency anemia
(12).

Moonlighting proteins extend their influence into
immune regulation and inflammatory signaling,
assuming functions not traditionally associated with their
primary roles. Chronic inflammation can lead to anemia
of chronic disease, where the body sequesters iron from
pathogens, reducing its availability for red blood cell
production. Proteins that modulate inflammatory
responses indirectly affect the development of anemia
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(12). Moonlighting proteins are also directly involved in
erythropoiesis (13). Proteins involved in cellular
metabolism may influence the proliferation and
differentiation of erythroid progenitor cells, and
deficiencies in these proteins can impair red blood cell
production, leading to anemia (14).

Furthermore, genetic mutations affecting
moonlighting proteins can result in hereditary forms of
anemia. Mutations in proteins with dual roles in
metabolism and erythropoiesis disrupt normal blood cell
formation (15). Compared to previous research, our study
delves deeper into the intricate roles of moonlighting
proteins in anemia. Prior studies have primarily focused
on individual functions of these proteins in specific
pathways (16). However, our research  will
comprehensively analyze their multifunctional roles and
the interplay among them in anemia. This study draws
upon core concepts from distinct yet interconnected
domains—such as hemoglobin production, iron balance
mechanisms, cellular development within the erythroid
lineage, and patterns of genetic variation—to construct a
unified analytical perspective. This synthesis aims to
elucidate the complex biological factors underlying
anemia in a comprehensive, structured manner (15,17).
This study aims to determine interactions among
candidate proteins in anemia using bioinformatics
methods and to predict crosstalk pathways in the
constructed networks to generate hypotheses. We propose
that the expression profiles of specific candidate proteins
within the anemia-associated functional network diverge
significantly from those observed in physiologically
normal individuals. In addition, we hypothesize that the
structural configurations and functional dynamics of the
regulatory proteins HAMP and EPO within their
associated molecular networks exhibit notable divergence
in individuals with anemia compared with those with
normal physiological profiles. By addressing the gap in
understanding the complex roles of moonlighting
proteins in anemia, this research employs advanced
bioinformatics and systems biology approaches to
elucidate the interactions and pathways underpinning
these proteins' multifunctionality. The outcomes of this
investigation are intended to shed light on prospective
molecular intervention points and support the
advancement of more efficient therapeutic strategies for
anemia management.

Materials and Methods

This analytical study examined expression data for
moonlighting proteins in patients with anemia compared
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with a control group of healthy individuals. The initial
data for network construction were extracted from
various bioinformatics databases, including MoonProt,
NCBI, SWISSprot, and Diseasome, using samples from
both anemic patients and healthy individuals. The data
recorded in these bioinformatics databases serve as the
gold standard, encompassing all verified protein
expression data from healthy individuals and anemia
patients.

To identify candidate proteins involved in anemia, a
comprehensive review and database search were
conducted across MoonProt, NCBI, GeneCards, Swiss-
Prot, and Diseasome.

Proteins implicated in the disease were selected based
on evidence from at least one of the following methods:
in vivo, in vitro, or in silico studies. These proteins were
then considered as candidate proteins. Expression data
were collected from these bioinformatics databases, and
the expression data from both groups were standardized
against the control group to compare the results and test
the study hypotheses.

Subsequently, an interaction network was constructed
from expression data for candidate proteins and human
moonlighting proteins in both the patient and control
groups. The networks were plotted separately for each
group in MATLAB. Structural parameters of the
expression data networks were calculated and compared
between the two groups. Statistically significant
parameters can be proposed as potential biomarkers.

All statistical calculations in this study were
performed using R and MATLAB software. Data analysis
employed advanced descriptive and inferential statistical
methods, as well as machine learning techniques based on
advanced bioinformatics algorithms. These methods were
used to compute network features for network data
analysis and to identify biomarkers associated with the
network'’s structural characteristics.

By employing these methodologies, this study aims to
elucidate the complex roles of moonlighting proteins in
anemia, providing insights into potential therapeutic
targets and contributing to the development of effective
treatments.

This analytical study aims to investigate the network
relationships of proteins involved in anemia and
moonlighting proteins, and to calculate essential
parameters. Initially, text mining methods were employed
to identify proteins implicated in anemia. The association
of these proteins with anemia was confirmed using at

332 Acta Medica Iranica, Vol. 63, No. 6 (2025)

least one of the following methods: in vivo, in vitro, and
in silico.

First, the most probable genes encoding these proteins
were identified using bioinformatics databases such as
MoonProt, NCBI, SWISSProt, and Diseasome. The set of
target proteins involved in anemia was then ranked using
the Gene-Disease Association (GDA) score. The GDA
score reflects the strength of the association between each
gene and anemia, with higher scores indicating a stronger
relationship. These scores were calculated based on
multiple sources of evidence, including in vivo, in vitro,
and in silico studies, as well as literature references.
Formally, the GDA score is defined as:

GDA=C+M+I+LGDA=C+M + I +L

Where:
e (C=0.6C= 0.6 if Nsourcesi>2N_{\text{sources}
o (18)i}>2
e (C=0.5C=0.5 if
Nsourcesi=2N_{\text{sources} i} =2
e (=0.3C=0.3 if

Nsourcesi=1N_{\text{sources} i} =1
e  C=0C=0 otherwise

Here, NsourcesiN_{\text{sources} i} represents the
number of specialized sources confirming the association
of the gene with the target disease (CTD, UNIPROT,

PSYGENET, CGL, GENOMICS, CLINGEN,

ORPHANET).

e M=0.2M=0.2 if
Nsourcesi>0N_{\text{sources} i}>0 in

databases like CTD, MGD, RGD

e  M=0M = 0 otherwise

e [=0.11=0.1 if Nsourcesi>0N_{\text{sources} i}
> 0 in databases like HPO, CLINVAR,
GWASCAT, GWASDB

e 1=01=0 otherwise

e L=0.1L=0.1 if Npubs>9N_{\text{pubs}} >9

e L=Npubsx0.01L=N_{\text{pubs}} \times 0.01
if Npubs<9N_{\text{pubs}} <9

NpubsN_{\text{pubs}} refers to the number of
publications confirming the gene-disease association in
databases like BEFREE, LHGDN. After calculating the
GDA score, the candidate genes for anemia were ranked
as shown in Table 1 (19,20).
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Table 1. GDA Scores for anemia protein interaction network

Gene Name GDA score
HBA2 1.0
HBA1 1.0
HBB 0.95
HAMP 0.95
EPO 0.90
ITPA 0.90
CSF2 0.85
SLC11A2 0.85
CSF3 0.85
TF 0.85

In the next step, some of the moonlighting proteins in
human samples were extracted from the MoonProt
database. These proteins are multifunctional and play
diverse roles in cellular processes, making them

significant in the study of diseases such as anemia. Table
2 lists representative examples of these moonlighting
proteins identified in human samples, highlighting their
diverse functional roles and relevance to anemia research.

Table 2. Some of the moonlighting proteins in
human samples

Protein Name

Index

1-Cys Peroxiredoxin

Hsp60

Enolase

Lactose Synthase
Delta-Aminolevulinic Acid
Dehydratase

Leukotriene A-4 Hydrolase
Lysyl Hydroxylase

1

2
3
4

Then, using the Gephi platform, we constructed the
interaction network between the candidate proteins and
moonlighting proteins. We determined the interaction
network structure among candidate proteins and
calculated network centrality measures to identify
essential proteins. In this network, edge weights were
determined based on the expression levels of the
corresponding proteins (21).

In the constructed interaction network (Figure 1).

Each node represents a protein, and the edges denote
physical or functional interactions, identified through at
least one of the methods: in vivo, in vitro, or in silico
studies, as well as genes computed based on the GDA
criterion (Table 1).

Identification of essential nodes

In the context of interaction networks, the term "hub"

describes nodes that are essential according to one of the
network centrality measures. In biological networks,
selecting hub nodes is crucial for identifying influential
components that significantly affect the network. These
hub nodes can be pivotal for understanding the network's
structure and dynamics. By pinpointing these critical
nodes, researchers can identify key genes or proteins
(Essentials) within the network that could serve as
biomarkers. These biomarkers are invaluable for
diagnosing or treating diseases. By analyzing structural
centrality measures, we aim to identify essential nodes in
the protein interaction network, thereby providing
insights that can aid in the development of effective
therapeutic strategies (18,22).
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Results score for node aa is defined as the size of the largest

Structural parameters of the network connected component to which node aa belongs. Based

Maximum neighborhood component (MNC) on this parameter, the highest MNC scores are attributed
Each node, such as node aa, has several neighbors to the following biomarkers (Table 3).

directly connected to it, denoted as N(a)N(a). The MNC The interaction network is visualized as follows:
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Figure 1. Interaction network of candidate proteins and moonlighting proteins in anemia. This figure illustrates the interaction network
constructed between candidate proteins and moonlighting proteins, identified in patients with anemia and compared to a control group of healthy
individuals. Each node represents a protein, and the edges depict physical or functional interactions, determined through in vivo, in vitro, or in silico
studies. The network visualization was created using Gephi, with edge weights based on the expression levels of the corresponding proteins.
Structural centrality measures were computed to identify essential nodes, which could serve as potential biomarkers for anemia diagnosis and
treatment

Table 3. MNC scores for anemia protein
interaction network including moonlighting
proteins

Biomarker Rank
GAPDH 1
PGK1
TPIL
EEF2
ACO1
RPS3
RPS13
RPS14
HSPD1
KARS1
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Degree centrality

Degree centrality is defined as the number of edges
connected to a node. Based on this criterion, the most
influential biomarkers in the anemia protein interaction

PTHLH
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network, including moonlighting proteins, are as follows
(Table 4):

The interaction network for these 10 components with
the highest degree scores is visualized as "(Figure 2)

ES}

R2
\‘)‘ CYP1B1
= "y

= FOXA1

Figure 2. Interaction network of candidate proteins and moonlighting proteins in anemia
This figure illustrates the interaction network constructed between candidate proteins and moonlighting proteins, identified in patients with
anemia and compared to a control group of healthy individuals. Each node represents a protein, and the edges depict physical or functional

interactions, determined through in vivo, in vitro, or in silico studies. The network visualization was created using Gephi, with edge weights based on

the expression levels of the corresponding proteins. Structural centrality measures were computed to identify essential nodes, which could serve as

potential biomarkers for anemia diagnosis and treatment

Closeness centrality

Closeness centrality is defined as the sum of the
shortest paths from a node to all other nodes in a
connected network. This measure is crucial for
identifying biomarkers in biological networks, as it
indicates how close a protein is to all other proteins.

Based on this criterion, the most significant biomarkers in
the anemia protein interaction network, including
moonlighting proteins, are as follows (Table 5):

The interaction network for anemia based on
closeness centrality is visualized as follows (Figure 4).

Table 4. Degree scores for anemia protein
interaction network including moonlighting
proteins

Biomarker

Rank

GAPDH
EEF2
PGK1
TPI1
ACO1
RPS3
RPS13
HSPD1
RPS14
KARS1

1
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Figure 3. Interaction network of Top 10 biomarkers by Degree Centrality. This figure illustrates the network structure of the top 10 biomarkers with

the highest degree scores, highlighting their central roles and interconnections within the anemia protein interaction network

Radiality

Radiality measures a node's proximity to all other
nodes in its neighborhood, identifying the nodes with the
shortest paths to others. Based on this criterion, the
highest radiality scores for proteins in the anemia
network, including moonlighting proteins, are as follows
(Table 6):

The interaction network for anemia based on radiality
is visualized as follows (Figure 5)

Betweenness centrality

Betweenness centrality measures the extent to which
anode lies on the shortest path between other nodes in the
network. Nodes with high betweenness centrality are
crucial for information transfer within biological
networks. The removal of these nodes could disrupt the
overall network communication. Based on this criterion,
the highest betweenness scores for proteins in the anemia
network, including moonlighting proteins, are as follows
(Table 7):

The interaction network for anemia based on
betweenness centrality is visualized as follows (Figure 6):

Table 5. Closeness scores for anemia protein
interaction network including moonlighting
proteins

Biomarker

Rank

GAPDH
EEF2
PGK1
TPI1
RPS13
ACO1
RPS3
RPS14
HSPD1
YBX1

1
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Figure 4. Anemia interaction network based on closeness centrality. This figure illustrates the network structure of the top
biomarkers ranked by closeness centrality, highlighting their central roles and interconnections within the anemia protein interaction
network. This analysis helps identify key proteins crucial to maintaining the network's integrity and function, making them potential

targets for therapeutic intervention

Table 6. Radiality scores for anemia protein interaction
network including moonlighting proteins
Biomarker Rank
GAPDH 1
EEF2
YBX1
PGK1
TPI1
RPS13
MRPS7
RPS14
RPS3
ACO1
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Table 7. Betweenness scores for anemia protein

interaction network including moonlighting proteins
Biomarker Rank
GAPDH 1
EEF2
YBX1
MAPK1
ACO1
ATF2
HSPD1
PARP1
MIRPL13
CSF2
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Figure 5. The interaction network for anemia based on radiality is visualized
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Figure 6. Anemia interaction network based on betweenness centrality. This figure highlights the network structure of the top biomarkers ranked

by betweenness centrality, emphasizing their pivotal roles and interconnections within the anemia protein interaction network. This analysis is crucial
for identifying key proteins that maintain the network's integrity and function, making them potential targets for therapeutic intervention
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Based on network analysis of candidate proteins in
anemia, using five centrality metrics (Maximum
Neighborhood Component, Degree, Betweenness,
Closeness, and Radiality), GAPDH, EEF2, TPI1, ACO1,
and RPS13 were identified as having the highest
consistency across these metrics.

e GAPDH (Glyceraldehyde-3-phosphate
dehydrogenase): Located on chromosome
12p13.31, it is predominantly expressed in
skeletal muscle. Diseases related to this gene
include  hemolytic  anemia  due to
triosephosphate isomerase deficiency. GAPDH
is involved in DNA synthesis inhibition,
chemotherapy, and acts as a strong pro-apoptotic
anticancer agent by activating caspase 3.

e EEF2 (Eukaryotic translation elongation
factor 2): Found on chromosome 19p13.3, this
protein is highly expressed in lymph nodes.
Related diseases include anemia, sideroblastic
anemia, and spinocerebellar ataxia. EEF2
functions as a high-affinity adenosine receptor

A. Bahrami, et al.

agonist.

e TPI1 (Triosephosphate isomerase 1): Located
on chromosome 12p13.31, TPI1 is highly
expressed in blood. It is associated with
hemolytic anemias and is a key component in the
synthesis and maintenance of cell membranes.

e ACOL1 (Aconitase 1): Found on chromosome
9p21.1, this protein is predominantly expressed
in blood. It is related to hemochromatosis and
functions as an antioxidant and mucolytic agent.

e RPS13 (Ribosomal protein S13): Located on
chromosome 11p15.1, it is highly expressed in
blood and associated with hemolytic anemia due
to triosephosphate isomerase deficiency. It
functions as an antioxidant and mucolytic agent.

These proteins were identified as essential due to their
high repetition and confirmation across the five centrality
metrics, making them significant in the study of anemia.
Their roles and mechanisms provide valuable insights
into potential therapeutic targets for anemia.

Table 8. Common proposed essential proteins based on 5 bioinformatics metrics. This table presents the
essential proteins identified using five centrality metrics in the bioinformatics analysis of the anemia protein
interaction network. The table includes the protein names, their full names, chromosomal locations, tissues
with the highest expression, associated diseases, and the mechanisms involved

Protein

Highest

Full Name Chromosome . Associated Diseases Mechanism Ref

Name Expression
Inhibition of DNA
Glyceraldehyde-3- Skeletal Hemolytic anemia due synthesis, chemotherapy,
GAPDH Phosphate 12p13.31 to triosephosphate strong pro-apoptotic (23)
Muscle . - - o
Dehydrogenase isomerase deficiency anticancer agent; activates
caspase 3

Eukaryotic Anemiga, sideroblastic P .

EEF2 Translation 19p13.3 Lymph anemia, spinocerebellar High-affinity adenosine (24,25)
- Nodes - receptor agonist
Elongation Factor 2 ataxia

. Key component in the
TPIL Triosephosphate 12p13.31 Blood Hemolytic anemias synthesis and maintenance  (26,27)

Isomerase 1

of cell membranes
ACO1 Aconitase 1 9p21.1 Blood Hemochromatosis Am'OX'dngnTUCOIy“C (28,29)
. . Hemolytic anemia due - ) .
RPS13 Ribosomal Protein 11p15.1 Blood to triosephosphate Antioxidant, mucolytic (30,31)
S13 . S agent
isomerase deficiency
Discussion development of tailored therapeutic frameworks

Anemia is characterized by a reduction in the number
or quality of red blood cells, leading to decreased oxygen
transport in the body. Leveraging computational
methodologies, this study advances the molecular
dissection of anemia by uncovering novel regulatory
patterns and diagnostic indicators. Integrating diverse
biological datasets enables a refined exploration of
anemia’s molecular determinants, fostering the

grounded in precision medicine. Bioinformatics uses
computational tools to analyze biological data, aiding the
study of complex diseases such as anemia (32,33). The
convergence of multi-omic datasets enables a more
refined dissection of anemia’s molecular etiology, laying
the groundwork for bespoke therapeutic strategies
aligned with the principles of precision medicine. This
precision-driven  approach informs individualized
treatment strategies by aligning molecular diagnostics
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with targeted therapeutic interventions.

Additionally, analyzing protein expression profiles in
anemic patients can reveal biomarkers indicating disease
severity or response to treatment (34). Bioinformatics
integrates proteomic data with clinical outcomes,
enhancing diagnostic accuracy. Furthermore, it enables
researchers to explore metabolic and signaling pathways
involved in erythropoiesis (red blood cell production),
thereby identifying new therapeutic targets for treating
anemia (35).

The investigation focused on the transcriptional
landscapes of anemia-associated proteins, underscoring
the critical function of bioinformatic methodologies in
their  systematic  identification and  molecular
characterization. Using resources like the GeneCards
database, this research integrates genomic, proteomic,
and clinical data to provide a comprehensive
understanding of anemia's molecular mechanisms. This
study employs computational analysis to investigate
molecular determinants of anemia, demonstrating how
bioinformatics enables the systematic identification and
functional annotation of relevant proteins. By
harmonizing multidimensional biological datasets, this
framework deepens mechanistic comprehension of
anemia and fosters the emergence of individualized
therapeutic models rooted in precision medicine.

GAPDH

GAPDH (Glyceraldehyde-3-phosphate
dehydrogenase), classically recognized for its catalytic
function in the glycolytic conversion of glyceraldehyde-
3-phosphate through oxidative phosphorylation, was
identified in this study as a key integrative component
within the anemia-associated protein interaction network.
Its centrality implies a potentially expansive role in the
molecular orchestration of iron-related
pathophysiological processes.

GAPDH interacts with the iron regulatory protein
IRP2, impacting iron metabolism, which is crucial
because iron deficiency is a common cause of anemia
(36,37). This molecular association may exert regulatory
control over the transcription of genes involved in iron
assimilation, intracellular depot formation, and metabolic
deployment, potentially shaping the pathophysiology of
iron-deficiency anemia. GAPDH has also been
implicated in the modulation of fetal hemoglobin (HbF)
synthesis, a process of clinical relevance given HbF’s
capacity to attenuate the pathological effects associated
with sickle cell disease. Modulating GAPDH activity
could thus have therapeutic potential in managing sickle
cell disease. The existing literature reinforces the present
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observations by demonstrating GAPDH’s involvement in
diverse regulatory pathways, thereby supporting its
multifaceted role in cellular control mechanisms.

In our analysis, GAPDH emerged as a significant
biomarker based on its high centrality metrics, suggesting
an essential role in the network. Its high expression in
skeletal muscle and its association with hemolytic anemia
underscore its importance. While GAPDH's primary role
lies in glycolysis, emerging evidence suggests broader
regulatory roles in anemia (38). This research expands the
functional profile of GAPDH, highlighting its relevance
beyond traditional roles and proposing it as a viable
molecular target for therapeutic intervention. The insights
gained offer a refined understanding of GAPDH’s
involvement in anemic pathology and inform the
development of more effective treatment modalities.

EEF2

Eukaryotic Translation Elongation Factor 2 (EEF2)
plays a critical role in protein synthesis by facilitating the
translocation of tRNA and mRNA during translation.
Through integrative network analysis, EEF2 emerged as
a pivotal node within the anemia-associated protein
interaction landscape, as determined by multiple
centrality metrics. This study harnesses computational
genomics to pinpoint genetic disruptions linked to distinct
anemic conditions, such as sickle cell disease and
thalassemia. By decoding these molecular aberrations,
the approach enables phenotype-specific stratification
and informs the design of tailored therapeutic regimens
within a precision medicine framework.

Recent studies have begun exploring the potential link
between EEF2 and various forms of anemia, driven by
EEF2K regulation. In response to metabolic stress,
eukaryotic elongation factor 2 kinase (EEF2K) becomes
activated and phosphorylates EEF2, disrupting its role in
ribosomal translocation during the elongation phase of
translation. This regulatory mechanism imposes a
translational checkpoint that limits protein synthesis,
conserving cellular energy and potentially impairing red
blood cell production under stress-induced hematopoietic
conditions. This translational attenuation may impair
erythropoietic output by limiting the biosynthetic
capacity required for red blood cell production,
particularly  during  stress-induced  hematopoietic
responses. Given that erythropoiesis is a highly energy-
dependent process, disruption of translation by EEF2K
activation can contribute to anemia

Additionally, EEF2K has a role in regulating immune
responses. Inflammatory conditions can lead to anemia of
chronic disease (ACD), where red blood cell production



is inhibited. Modulating EEF2K activity may affect the
inflammatory response, influencing the development of
ACD.

Our findings align with previous research,
emphasizing EEF2's importance in protein synthesis and
its regulation under stress. The identification of EEF2 as
a key node in the anemia protein network highlights its
potential as a therapeutic target. Understanding the
effects of EEF2K inhibitors, such as A484954, on EEF2
activity could provide insights into their potential impact
on anemia, especially in patients with comorbid
cardiovascular issues. These findings enhance our
understanding of EEF2's role in anemia and suggest new
avenues for therapeutic intervention.

TPI1

Triosephosphate Isomerase 1 (TPI1) is an essential
enzyme in the glycolytic pathway, responsible for the
interconversion of dihydroxyacetone phosphate and
glyceraldehyde 3-phosphate. Our study identified TPI1 as
a significant protein in the anemia protein interaction
network, highlighting its role based on multiple centrality
metrics. This finding underscores TPI1's critical function
in red blood cell metabolism and its potential impact on
anemia (39).

TPI1 deficiency is primarily associated with
congenital hemolytic anemia. This condition arises from
reduced enzyme activity, leading to the accumulation of
dihydroxyacetone phosphate (DHAP) and subsequent
metabolic disturbances in red blood cells (39). Impaired
glycolytic function reduces energy production, which is
crucial for maintaining red blood cell integrity and
lifespan. Consequently, patients with TPI1 deficiency
experience hemolysis and reduced red blood cell counts,
contributing to anemia (40).

Metabolic stress activates EEF2K, leading to EEF2
phosphorylation and disruption of its role in ribosomal
translocation, thereby dampening protein synthesis. This
post-translational modification impairs its role in
coordinating ribosomal movement during peptide chain
elongation, thereby imposing a translational restraint that
conserves cellular energy and may disrupt erythroid
biosynthesis under stress-adaptive conditions. This
stress-responsive modulation of translational machinery
imposes a biosynthetic constraint that may compromise
erythroid lineage maturation and red blood cell output.
The severity of the disease can lead to significant
complications, and most affected individuals do not
survive beyond early childhood without intervention (41).
Our network-based analysis identified TPI1 as a key
regulatory node within the anemia-associated protein

A. Bahrami, et al.

interaction framework, reinforcing its established role in
sustaining erythrocyte integrity and its pathogenic
relevance to hemolytic anemia. The Glu104Asp variant,
the most prevalent mutation linked to TPI1 deficiency,
accounts for the majority of documented cases and is
strongly associated with severe clinical outcomes. Other
mutations like E105D have also been identified,
contributing to the phenotypic diversity observed in
patients. Diagnostic evaluation of TPI1 deficiency relies
on a combination of molecular and biochemical
approaches, particularly in individuals exhibiting
unexplained hemolytic anemia and neurological
impairments. Comprehensive diagnosis of TPI1
deficiency integrates molecular screening for pathogenic
variants with functional assays quantifying enzymatic
activity in red blood cells. This integrative diagnostic
strategy enhances clinical accuracy by linking genotypic
alterations with measurable enzymatic deficits in
erythrocytes. Elevated concentrations of
dihydroxyacetone phosphate (DHAP) serve as an
additional biochemical hallmark. As no curative therapy
currently exists, clinical management centers on
supportive interventions, including transfusion-based
correction of anemia and treatment of secondary
complications, such as recurrent infections. Our findings
contribute to this understanding, highlighting the need to
recognize TPI1's role in anemia for better diagnosis and
management (42).

ACO1

ACO1 encodes a bifunctional cytosolic protein that
operates as both a metabolic enzyme within the
tricarboxylic acid (TCA) cycle and a post-transcriptional
regulator of iron homeostasis. Under iron-replete
conditions, ACO1 incorporates a [4Fe-4S] cluster and
functions enzymatically as aconitase, catalyzing the
isomerization of citrate to isocitrate. Conversely, in iron-
deficient states, the protein adopts an RNA-binding
conformation, interacting with iron-responsive elements
(IREs) on transcripts encoding ferritin and the transferrin
receptor to modulate iron uptake and storage. Network
analysis from our study positioned ACO1 as a central
node within the anemia-associated protein interaction
landscape, underscoring its pivotal role in coordinating
iron metabolism with erythropoietic demand (43,44).
ACOL1 is pivotal in maintaining iron homeostasis, and
mutations or dysregulation can lead to iron deficiency
anemia. It also plays a role in sideroblastic anemia,
characterized by ringed sideroblasts in bone marrow due
to disruptions in iron metabolism, leading to ineffective
erythropoiesis.
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Furthermore, ACOL is involved in anemia of chronic
disease (ACD), often associated with inflammatory
conditions. Inflammatory cytokines can modulate ACO1
activity, altering iron distribution and contributing to
ACD development (45). Our findings support previous
research, which has established ACO1's dual role as both
a metabolic enzyme and an iron regulator. Understanding
ACOL1's function highlights its potential as a therapeutic
target. Modulating ACOL1 activity could improve iron
availability for red blood cell production, offering new
avenues for treating various forms of anemia (46).

RPS13

RPS13, or Ribosomal Protein S13, is a component of
the ribosome essential for protein synthesis in cells.
Although the direct relationship between RPS13 and
anemia is not well documented, understanding the
broader context of ribosomal proteins and their roles in
cellular function can provide insights into potential
connections. Ribosomal proteins, such as RPS13, play
indispensable roles in erythropoiesis by supporting the
translational demands of proliferating erythroid
precursors. As integral components of the ribosomal
machinery, they ensure efficient protein synthesis, which
is required for hemoglobin production and cellular
maturation during red blood cell development.
Disruptions in ribosomal protein function can lead to
various forms of anemia, particularly those associated
with ineffective erythropoiesis (47).

Conditions such as Diamond-Blackfan anemia (DBA)
are linked to mutations in ribosomal protein genes,
leading to reduced red blood cell production (48).
Although RPS13 is not directly involved in DBA, its role
in ribosome assembly and function suggests that
abnormalities in ribosomal proteins can contribute to
anemia. Ribosomal proteins also play a role in the cellular
response to erythropoietin, a hormone that stimulates red
blood cell production. Compromise in ribosomal
architecture can attenuate cellular responsiveness to
erythropoietin, thereby disrupting the proliferation and
differentiation of erythroid progenitors. This translational
inefficiency may culminate in suboptimal red blood cell
formation and contribute to an anemic phenotype (49).

Our study identified RPS13 as a significant protein in
the anemia protein interaction network, based on multiple
centrality metrics, emphasizing its role in cellular
processes. While specific studies directly linking RPS13
to anemia are limited, several indirect connections can be
considered. Anemia, especially in conditions like sickle
cell disease, is often exacerbated by oxidative stress and
inflammation (50). RPS13 may influence the stress-
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adaptive behavior of erythroid progenitors by modulating
ribosomal performance under adverse physiological
conditions. In parallel, folate plays a central role in
nucleotide biosynthesis and cell cycle fidelity; its
insufficiency  disrupts DNA replication, impairs
erythroblast ~ proliferation, and  culminates in
megaloblastic anemia. Although RPS13 does not directly
interact with folate metabolism, any ribosomal
dysfunction can impact the synthesis of proteins involved
in folate utilization, thereby affecting erythropoiesis (51).

This study pinpointed GAPDH, EEF2, TPI1, ACO1,
and RPS13 as pivotal molecular nodes within the protein
interaction landscape of anemia, each exerting
specialized roles in regulating red blood cell formation
and maintaining iron balance. By integrating multi-source
genomic and proteomic data, we revealed how these
proteins influence red blood cell formation, stress-
adaptive translation, and iron-responsive signaling. Their
network centrality and biological relevance suggest
strong potential as clinical biomarkers for anemia
subtyping and for monitoring anemia progression.
Moreover, these findings provide a foundation for
developing targeted therapies, such as small-molecule
modulators or gene-based interventions, that could
restore erythroid function or correct metabolic
imbalances. The study’s systems-level approach bridges
molecular insight with translational utility, paving the
way for precision diagnostics and personalized treatment
strategies in anemia management.
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