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Abstract- Prior animal models have shown that rats sustaining 3-second immediate spinal cord compression 

had significantly better functional recovery and smaller lesion volumes than rats subjected to compression 

times of 1 hour, 6 hours, 3 weeks, and 10 weeks after spinal cord injury. We compare locomotor rating scales 

and spinal cord histopathology after 3 seconds and 10 minute compression times. . Ten rats were assigned 

into two early (3-second) and late (10-minute) compressive surgery groups. Compressive injury was 

produced using an aneurysmal clip method. Rats were followed-up for 11 weeks, and behavioral assessment 

was done by inclined plane test and tail-flick reflex. At the end of the study, the rats were sacrificed, and 

spinal cord specimens were studied in light and EM. Basso, Beattie and Bresnahan (BBB) locomotor rating 

scales were significantly better in the early compression group after the 4th week of evaluation (P<0.05) and 

persisted throughout the remainder of the study. Histopathology demonstrated decreased normal tissue, more 

severe gliosis and cystic formation in the late group compared to the early group (P<0.05). In EM study, 

injuries in the late group including injury to the myelin and axon were more severe than the early 

compression group, and there was more cytoplasmic edema in the late compression group. Spinal cord injury 

secondary to 3-second compression improves functional motor recovery, spares more functional tissue, and is 

associated with less intracellular edema, less myelin and axon damage and more myelin regeneration in rats 

compared to those with 10 minutes of compression. Inclined plane test and tail-flick reflex had no significant 

difference.  
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Introduction 
 
Spinal cord injuries (SCI) are among the most disabling 
conditions not only to the individual but also to patient’s 
families.(1,2). Despite immense spinal cord injury 
research, the prognosis remains poor in terms of 
neurologic recovery after an acute SCI (3-5). 
Neurological status after SCI primarily depends on the 
extent of injury to neural tissues (6). Following the 
primary mechanical injury to the spinal cord, a complex 

cascade of secondary injuries such as tissue edema, 
ischemia and inflammatory processes (7-9) result in 
further neural damage, apoptosis (6) and reducing 
endogenous recovery (1). Spinal cord decompression 
and adequate vascular perfusion preservation to the 
injured spinal cord tissue are the two important 
strategies believed to be effectual on neurological 
outcome (10). Although the importance of restoring 
spinal stability is well established (11,12), the timing of 
surgical intervention is still debated (3-5,11-14). Time 
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frames of surgical intervention differ in human and 
animal models. Early decompressive surgery in human 
SCI is usually referred to as surgical intervention within 
the first 24 hours after injury versus early 
decompression in animals is referred to decompression 
at seconds our minutes after injury (15). In animal 
studies, it has been shown that neurologic recovery 
depends on the timing of decompression and 
significantly more favorable results have been seen after 
an early decompressive surgical intervention 
(3,11,13,16).  

In our previous study (3,17), SCI compression was 
performed on rats using an aneurysmal clip compression 
technique. Our results showed that early SCI 
decompression resulted in less tissue damage compared 
to late decompression in terms of measurement of the 
injured spinal cord surface on axial spinal cord sections 
stained with hematoxylin and eosin (H&E) and better 
recovery of normal behavior as defined by Basso, 
Beattie and Bresnahan locomotor rating scales (BBB) 
(18). In this study, we investigate two additional 
questions. First, 10-minute SCI compression was 
investigated as an intermediate time point between 3-
second and 1-hour decompression in terms of both 
sensorimotor recovery and SCI lesion volume. Second, 
electron microscopic evaluation was utilized to explore 
axonal injury, myelination, and post-injury integrity of 
the nucleus, mitochondria and endothelium. 
 
Materials and Methods 
 
The study was conducted at Research Centre for Neural 
Repair, University of Tehran, during September to 
December 2010. 
 
Rats 

A total of 12 adult female rats (Ratus norvegicus 
wistar) weighing between 200 and 300 grams were 
obtained from the animal facility at Tehran University of 
Medical Sciences (TUMS). The rats were assigned into 
three groups. Five rats were put into a group receiving 
early decompression after (3 seconds) compressive 
injury of the spinal cord. In another group, five rats were 
decompressed after 10 minutes (late compression) and 
one rat underwent sham treatment. On the injury day, 
one rat in the late compression group suffered from 
severe hind limb bleeding and was sacrificed; hence 
another rat was used to ensure equal sized groups. 
 
Compression method 

Methods of surgery and anesthesia and care of the 

rats have been mentioned in our previous study (3). 
Briefly, rats were anaesthetized with an intraperitoneal 
injection of ketamine (100 mg/kg) and xylazine (10 
mg/kg). Fascia and paravertebral muscles were gently 
dissected until the lamina and transverse processes of T9 
were exposed.  Laminectomy was carried out, and spinal 
cords of rats were exposed and compressed extradurally 
by an aneurysm clip [Yasargil aneurysm clips FE716K] 
at the T9 level. The spinal cord decompression was 
performed at 3 seconds in the early group and 10 
minutes in the late group by removing the aneurysm 
clip. The sham rat was anesthetized and underwent 
laminectomy without spinal cord compression. After 
surgery, intraperitoneal normal saline (10 cc) was 
injected twice daily for a week, and prophylactic 
antibiotics (Gentamicin sulfate 1 mg/kg and cephazolin 
75 mg/kg) were administered twice daily. Manual 
bladder emptying was performed three times a day in the 
first week after injury and thereafter twice daily. 
 
Neurological assessment 

The neurological results after SCI were assessed on 
the 1st, 4th and 7th day after injury; further assessments 
were done weekly and continued for 11 weeks. The 
BBB (18), TFR (19,20) and inclined plane test (21) were 
used in the neurological evaluation of rats. In BBB 
scoring system, motor function is rated by strength and 
positioning of the hind limbs. The score ranges from 0 
for a completely paralyzed animal without any 
movement to 21 for a normal, healthy, walking animal. 
TFR is a flexor withdrawal reflex that functions even in 
decerebrated rats with intact spinal cord function. It was 
performed by pinching the rats tail and the movement 
was assessed. The inclined plane test performed by 
placing the rat on an adjustable inclined plane to provide 
a slope of varying grade and the maximum angle at 
which the rat can maintain its position without  
falling could be assessed (21). Functional outcome of 
the rats was measured by this test once during the study 
period. 

In every assessment session, two examiners 
evaluated each rat individually. Each rat was weighed 
and assessed separately for 4 minutes in an open area; 
the behavioral recovery is presented as the mean BBB 
score for the hind limbs and the presence or absence of 
the TFR was recorded. Whenever two BBB scores 
differed between examiners, the average score was 
recorded.  
 
Pathology 

After 11 weeks, rats were anaesthetized by an 
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intraperitoneal injection of ketamine (100 mg/kg) and 
Xylazine (10 mg/kg) and were sacrificed by intracardiac 
perfusion with 4% paraformaldehyde in 0.1 M 
phosphate buffer (pH=7.35). Spinal cords were dissected 
out and sections containing at least 1.5 centimeters 
rostral and caudal from the injury site were resected. 
The sample cords were fixed in glutaraldehyde 2.5% 
solution. 

From each group, tissue samples were obtained in 
axial sections at the site of the injured spinal cord for 
electron microscopy and two additional (caudal and 
rostral to the injury site) sections were used for the light 
microscopy. An 1×1 mm specimen, containing both gray 
and white matter was trimmed from the injury site of the 
same specimens for electron microscopy preparation. 
The tissue pieces were stored in the 2.5% glutaraldehyde 
fixation solution (pH=7.4) for 24 hours. Then, the 
samples were washed in phosphate buffer saline and 
post-fixed in 1% osmium tetroxide (pH=7.4). Ultrathin 
sections of samples, 70-100 nm thickness, were stained 
with uranyl acetate and lead citrate. 

For light microscopy assessment, spinal cord 
specimens were fixed overnight in 4% 
paraformaldehyde, dehydrated in graded ethanol 
solutions, immersed in xylene and embedded in paraffin. 
Serial 5 µm cross sections, separated by 50 µm, were cut 
from areas caudal and rostral to the lesion’s center using 
a vibratory microtome. H&E staining was performed for 
all sections. ImageJ (an open source java based program 
developed by NIH) (22) was used to measure spared 
tissue, using pathological features like cystic cavitation 
and gliosis  as well as the total spinal cord area with area 
selection and analysis feature of Image J (23). The 
percentage of spared tissue of spinal cord was calculated 
by dividing the area of normal appearing tissue over the 
entire tissue in the most injured cross section of the 
spinal cord (24). 
 
Statistical analysis 

Statistical analysis was done by GraphPad Prism 5.0. 
A two-way ANOVA test was used for the analysis of 
BBB scores and Mann-Whitney U test for analyzing 
histopathology findings. 
 
Results 
 
Behavioral assessment  
Analysis of rats undergoing compression at the two time 
points of 3 seconds  and  10  minutes  after  SCI  showed  

 
Figure 1. BBB score of two groups.  

BBB scores of two groups are shown. First day post injury 

BBB scores of all rats were 0, which indicates a complete 

injury. A significant difference between mean BBB scores of 

two groups is seen from 4th to 11th weeks post injury (P<0.05). 

 
that recovery in behavioral scales (BBB) was 
significantly better in the early compression group 
(P<0.05) after the 4th week (difference: -6.100, 
Confidence Interval (CI) 95%: -9.468 to -2.732) (Figure 
1). The sham rat was fully recovered after the 5th week 
of follow up (BBB score of 21 thereafter). In all rats, 
BBB score improved during the study. The inclined 
plane test was used once during the study and showed 
that rats in early compression could gain stability on a 
table with an inclination of 32.7±6.8 degrees and rats in 
the late group established stability with an average table 
inclination of 35±5.7 degrees, a non-significant 
difference with the early group. Tail flick reflex (TFR) 
was positive in all rats the day after SCI and remained 
positive throughout all 11 weeks of the study.   
 
Histopathologic findings 

Histopathologic evaluation revealed less tissue loss 
and more preserved tissue in the 3-second group 
compared to the 10-minute group (Figure 2). On light 
microscopy evaluations, the absolute cross sectional area 
was decreased in both early and late intervention groups 
compared with the rat which underwent sham 
intervention. Light microscopy showed no sharp border 
between gray and white matter in either the early or late 
compression groups. Our study demonstrated that gliosis 
and cyst formation was more severe in the late SCI 
compression group than in the early group (P<0.05). In 
the late compression group, large central cavitation was 
seen with partially spared peripheral tissue and intact 
ependymal lining; both ventral and dorsal horns were 
distorted (Figure 2). In the early compression group, 
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tissue loss occurred in smaller areas, mostly gray matter 
(Figure 2). Tissue sparing averaged 76% in axial spinal 
cord sections in the early compression group, which 
exceeded tissue sparing in the late compression group 

(13% (P<0.05)). Clip compression caused injury to the 
dorsal columns of the spinal cord characterized by 
cavitation, gliosis, and atrophy (Figure 2).  

 

 
Figure 2. Light microscopic findings of rat decompression at T9. 
A normal cross-sectional histology of an operated rat after anesthesia and laminectomy with clip-compression injury is shown (Left). 
Early decompression histopathology (Middle) – 3-second clip-compression transverse section of rat which shows 76% saved cross-
section of spinal cord on both anterior (large) and posterior (small) sides in white and gray matter. Necrotic cells with gliosis and 
inflammatory cells can be seen even after 11-week of injury. Late 10-minute (Right) clip-compression histopathology at ninth 
thoracic vertebra (T-9) transverse section of rat which shows 13% saved cross-section of spinal cord on both lateral sides in white 
and gray matter. There are extensive areas of necrotic cells with gliosis and inflammatory cells after 11weeks of injury. Large 
syringomyelia has been demonstrated in the center of spinal cord. Original magnification ×200. 

 

	
Figure 3. Electron microscopic findings of Early and Late rat decompression 
Mitochondria (arrows), Nucleus (N), Intact myelin (M), Regenerated myelin (R), Degenerated myelin (D), Edema (E) and Collagen 
fibers (arrow head). 
Figure 3a and 3b shows several layers of remyelination, degenerated myelin and intercellular and intracellular edema, intact nucleus 
along with engorged mitochondria in the early 3-second decompression group. Figure 3c and 3d shows layers of remyelination, 
collagen fibers, engorged mitochondria, intact nucleus and intracellular and intercellular edema in the late 10-minute decompression 
group. Original magnification ×11000. 
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Epidural fibrosis and chronic inflammation were 
seen at the level of the compression in both groups. This 
was accompanied by discrete areas of Wallerian 
degeneration and demyelination in specimens 
undergoing immediate decompression. Severe central 
necrosis at the level of compression and as much as 2 
cm cephalad to the level of compression was seen when 
decompression was performed on a delayed basis. There 
was marked axonal degeneration in the long tracts of the 
spinal cord which was most prominent in the dorsal 
columns. Caudal to the level of the compression, there 
was a loss of axonal architecture with increased numbers 
of Schwann cells, fibrosis, and axonotmesis was 
noticeable. In transverse sections of clip-compressed 
spinal cord, dorsal cord necrosis and cavitation were less 
severe in the 3-second group compared to the delayed 
group. The qualitative comparison of the injured groups 
of rats did not reveal any meaningful difference 
regarding the following histopathologic findings: 
Inflammation, congestion, hemorrhage, fibrosis, and 
demyelination. 

In EM, although every effort was made to select the 
junction of gray and white matter, severe distortion of 
histopathology prevented the accurate identification of 
the gray-white matter junction. EM shows that myelin 
layers were significantly more regenerated in the early 
compression group (Figures 3a and 3b). In EM sections,  
(Figure 3c and 3d), injuries to myelin (degeneration and 
vesiculation) axon, mitochondrial engorgement, 
organelle accumulation and collagen formation were 
more severe in the late compression group. Moreover, 
there was significantly more extra- and intracellular 
edema in late compression samples. 
 
Discussion 
 
This study shows that early decompression of injured 
spinal cord lesion results in better functional recovery 
and preservation of more anatomic histopathologic 
features. EM findings revealed that ultrastructural 
damages were more intense in the late decompression 
group. 

Although clinical studies show better outcomes in 
early decompression of SCI in animal SCI models (25), 
timing of surgical decompression in SCI is still 
controversial (3-5,11-14,25). However, there are 
ongoing prospective studies to determine the role and 
timing of surgical decompression in traumatic SCIs (2, 
26). Early surgical decompression has been shown to 
result in a better neurological outcome in animal models 
of SCI (3,11,13,27,28).  Improved neurologic recovery 

in early decompression is due to removal of direct 
mechanical cord compression and reversal or 
minimization of secondary mechanisms of injury 
including ischemia and apoptosis (6-8,29). Studies have 
worked on medical or surgical interventions to minimize 
the secondary pathways of injury (6,27,30-34). 
However, basic to any intervention to decrease the 
secondary degeneration of spinal cord injured tissue is 
the mechanical decompression of the neural elements, in 
which early decompression helps preserve more spinal 
cord tissue, decreases lesion volume and enhances 
behavioral recovery (13,25). In our previous experiment 
(3) with sixty-three rats, the BBB scores were 
significantly better in the early (3-second) 
decompression group compared with the late (1-hour) 
decompression group as early as the 4th day after injury, 
a difference which persisted for the next six weeks. 
Several weeks after SCI, the BBB scores of rats in the 3-
second group of our previous study were worse than the 
present study. This difference can be explained by a 
longer duration of compression in our previous study, 
less force applied by the aneurysmal clips in this study, 
and/or better post-injury care provided to the SCI rats 
with the benefit of more experience. The observation of 
significant difference in BBB scores(but not the incline 
plane test and tail-flick reflex) suggests that BBB 
scoring systems may be a more sensitive test in 
differentiating small amounts of difference in motor 
function among spinal cord injured rats.  

There is an association between BBB and spared 
spinal tissue in histopathologic examination (35). Poon 
et al. have shown that the force of clip compression 
injury in the rat thoracic cord has been correlated with 
both functional and histologic outcome measures (35). 
Our previous and present studies have demonstrated that 
the 3-second duration of clip compression injury in the 
rat thoracic cord has been correlated with both better 
functional and histologic outcome measures. 

Previous investigations have utilized EM microscopy 
in the study of SCI in rats using a 5-minute compressive 
SCI mechanism. At sacrifices, 24 hours after SCI, 
myelin damage, vesicular degeneration, and intracellular 
and axonal edema were demonstrated along with 
mitochondrial damage and inflammatory cells 
infiltration (29). In studies by Liu et al. (36), and Zhu et 
al. (37), spinal cord sections after acute SCI 
demonstrated apoptotic and necrotic changes. 
Cytoplasmic shrinkage, plasma membrane budding, 
coarse chromatin condensation, and breakdown of the 
nucleus into discrete, membrane-bounded bodies 
characterize apoptotic cells while necrotic changes are 
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characterized by cell, nuclear, and mitochondrial 
swelling and cellular membrane breakdown (36,37). In 
our study, fibrosis and vesiculation in H&E stain were 
correlated with massive collagen fibers, edema and 
organelle accumulation in EM sections.   
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