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Abstract- In Wistar rats, reproductive behavior is controlled in a neural circuit of ventral forebrain including 

the medial amygdala (Me), bed nucleus of the stria terminalis (BNST) and medial preoptic area (MPOA) via 

perception of social odors. Diabetes Mellitus (DM) is a widespread metabolic disease that affects many 

organs in a variety of levels. DM can cause central neuropathies such as neuronal apoptosis, dendritic 

atrophy, neurochemical alterations and also causes reproductive dysfunctions. So we hypothesized damage to 

the nuclei of this circuit can cause reproductive dysfunctions. Therefore in this project we assessed diabetic 

effect on these nuclei. For this purpose neuron tracing technique and TUNEL assay were used. We injected 

HRP in the MPOA and counted labeled cells in the Me and BNST to evaluate the reduction of neurons in 

diabetic animals. Also, coronal sections were analyzed with the TMB histochemistry method. Animals in this 

study were adult male Wistar rats (230 ± 8g) divided to control and 10-week streptozotocin-induced diabetic 

groups. After data analysis by SPSS 16 software, a significant reduction of HRP-labeled neurons was shown 

in both Me and BNST nuclei in the diabetic group. Moreover, apoptotic cells were significantly observed in 

diabetic animals in contrast to control the group. In conclusion, these alterations of the circuit as a result of 

diabetes might be one of the reasons for reproductive dysfunctions. 
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Introduction 
 

Diabetes mellitus (DM) is a chronic endocrine 
disease that described as a disorder in carbohydrate 
metabolism. Two factors are mentioned as leading 
causes of DM including destruction of pancreatic β-cells 
(type 1 diabetes) and insulin insensitivity (type 2 
diabetes) (1). Over 171 million people in the world are 
suffering from diabetes, and it is estimated to grow up to 
rate of 366 million people in 2030 (2). In Iran, 7.7% of 
adult people had diabetes in 2008 (3). 

Peripheral and central neuropathies caused by 
diabetes are well known (4). For example, DM results in 
stress oxidative (5), morphological plasticity such as 
decrease of neuron diameter (6), neuroaxonal dystrophy 
(7),dendritic atrophy and decrease in spine density in 
CA1 pyramidal neurons (8), neuronal apoptosis (9), 
behavioral problems (10,11), finally 

electrophysiological and neurochemical alterations (12). 
Numerous studies reported reproductive 

dysfunctions as another important complication of 
diabetes (13-15). Although peripheral organs perform 
reproductive behavior such as spermatogenesis, 
ejaculation, fertility and androgenic hormone secretion, 
but it controls in central nervous system. 

In many rodent species, proper reproductive 
behaviors depend on reception and perception of social 
odors (16), then these chemosensory signals merge with 
hormonal signals and process in a neural circuit between 
three nuclei in forebrain including medial amygdala 
(Me), bed nucleus of stria terminalis (BNST) and medial 
preoptic area (MPOA) (17,18). Particularly BNST and 
Me both receive chemosensory signals (19) and are 
densely connected to each other and to MPOA (18, 20, 
21). In addition, according to studies conducted on male 
hamsters, damage of Me (22) and MPOA (23) 
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eliminates copulatory behavior and causes severe 
deficits in preference for volatile opposite-sex odors 
(23,24). However, in lesion of BNST in male hamsters, 
the elimination just was observed in odor preference 
(25) and deficits in copulatory behavior were temporal 
and more subtle (26,27). Consequently, it is concluded 
that MPOA, Me and BNST act as a neural network in 
the regulation of reproductive behavior. According to 
these findings and this fact that these nuclei contain 
glucose-sensing neurons which express glucokinase 
(that plays an important role in regulation of glucose 
level through insulin secretion) mRNA and respond 
directly to availability and changes of blood glucose 
levels (28,29), in this project we hypothesize diabetes 
causes reproductive dysfunction through damage to this 
circuit as a controlling center for reproductive functions. 

  
Materials and Methods 
 
Animals 

24 adult male Wistar rats (230 ± 8 g) are used in this 
study. The animals were holding on 12 hours light/dark 
cycle. Water and food were available all the time. 
Animals were assigned into diabetic and control groups 
randomly. Type 1 diabetes (n=12) was induced by a 
single intraperitoneal injection of 60 mg/kg b.w. 
Streptozotocin (Sigma-Aldrich, St. Louis, MO, The 
USA). A week after the induction, glucose level was 
assessed using blood-glucose monitoring test strips. 
Blood glucose level was >300 mg/dl in all STZ-injected 
animals. Diabetic animals were maintained for 10 weeks 
before the study. 

Neuron is tracing, and TUNEL staining was used to 
study the effects of diabetes on the Me and BNST.  

 
Stereotaxic injection of HRP 

After anesthesia using a single intraperitoneal 
injection of ketamine and xylazine (80 mg/kg and 8 
mg/kg respectively), the animal head was placed into a 
stereotaxic apparatus using ear bars. The skull was 
exposed, and lambda and bregma were aligned by 
regulating the incisor bar. 200 nl HRP (Sigma, type VI) 
was injected into MPOA (by 1 μl syringe, Hamilton, 
Reno, NV, USA) according to coordinates in Paxinos 
and Watson Atlas (2007). Following injection, HRP is 
transported retrogradely via axonal endings to perikarya 
of Me and BNST projections to the injection site. 
Subjects were recovered for 48 hours. After deep 
anesthesia with ketamine and xylazine perfusion was 
performed transcardially with 200 ml normal saline 
followed by 300 mL 4% paraformaldehyde and 200 ml 

sucrose buffer 10% and soaking in 10% glycerin 
overnight at 4°C. The brains were removed and cut in 
coronal sections (40 µm) on a freezing microtome 
(Cryocut 1800, ELICA). The sections were reacted with 
tetramethyl benzidine (Sigma. St Louis. Mo, The USA) 
following the procedure of Mesolam et al., (30) to 
distinguish  HRP-labeled neurons. After mounting and 
counterstaining with 1% neutral red, the slides were 
studied by light microscope and digital photos were 
taken. The injection site was evaluated, and optika 
software counted diffusion of labeled cells in Me and 
BNST. SPSS 16.0 software was used for data analysis. 

 
TUNEL assay   

After deep anesthesia, perfusion was performed with 
200 ml of normal saline followed by 10% formalin. 
Paraffin-embedded brains were cut coronally (7 µm) by 
microtome. After deparaffinized, the sections were 
incubated with proteinase K (Sigma, St. Louis, MO, and 
The U.S.A.) to strip nuclei of tissue of proteins. 
Endogenous peroxidase activity was quenched with 2% 
H202 in phosphate- buffered saline (PBS). The slices 
were incubated in a humidified chamber at 37°C for 1 h 
with terminal deoxynucleotidyl transferase (TdT) and 
dUTP-digoxigenin to label 3'-OH DNA ends in 
apoptotic nuclei. Incubation with the stop/wash buffer at 
37°C for 30 min was done to stop the reaction. The 
slices were colorized with diaminobenzidine /H202 
solution after incubation with anti-digoxigenin-
peroxidase. Finally, coronal sections were 
counterstained with hematoxylin and studied by light 
microscopy. 
 
Results 

 
Blood glucose level and body weight 

Animal weight and blood glucose level were 
recorded during the study in both control and diabetic 
groups. Body weight normally increased in control 
animals (from 228 Â±10 to 334 Â ±10) and blood 
glucose level was 80-110 mg/dl with no change. In 
contrast, body weight of animals in the diabetic group 
was decreased (230 Â±7 to 171 Â±4) and blood sugar 
was >300 mg/dl during the disease (Figure 1). 

 
Neuron tracing  

HRP was injected in MPOA (Figure 2) and labeled 
cells were seen in Me and BNST. The cells were 
counted in both nuclei ipsilateral to the injection site. 
Based on Paxinos Atlas, 6 sections per nucleus in each 
animal were selected to study by light microscope. 
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Labeled neurons in these sections were counted. In both 
Me and BNST, number of labeled neurons in first and 
sixth sections was less in contrast to other sections 
(19%). In the control group the total mean of labeled 
neurons of Me and BNST were 33.83± 2/13 and 
41.66±1/96 respectively. These numbers in the diabetic 
group were 26.83± 2/31 and 33.83±1.16 in Me and 
BNST respectively. These data show a significant 
reduction (20.69% in Me and 18.79% in BNST) of 
labeled cells in 10-week diabetic group (P≤0.05) (Figure 
3 and 4). 

 
Apoptosis 

Apoptosis (DNA fragmentation) was investigated 

With the ApopTag kit staining. A neuron with a 
wrinkled and condensed nucleus (due to the DNA 
fragmentation) was considered as an apoptotic cell. We 
counted apoptotic neurons of the Me and BNST in two 
groups. In control animal’s brain sections, a 
considerable amount of apoptosis did not appear in any 
nuclei. Cell death was approximately equal in Me and 
BNST (~0-3 per section) in this group. In case animals, 
the diabetes had affected on neuron survival, and the 
number of apoptotic cells had increased significantly 
(P≤0.05). Nearly 20 apoptotic neurons per section were 
seen in the both nuclei. In this group, a number of 
apoptosis in the Me and BNST was equivalent (Figure 
5).  

 

 
Figure 1. Changes of body weight in diabetic and control groups in duration of the study 

 
 
 

 
Figure 2. Injection site 
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Figure 3. HRP-labeled cells 

A: Me and B: BNST in the control group. C: Me and D: BNST in diabetic group (×400) 

 
 

  
Figure 4. The number of labeled cells of Me (the left chart) and BNST (the right chart) in control and diabetic groups 

*Significant differences between control and diabetic groups 

 
 

 
 

Figure 5. Apoptotic activity in the control group  
(A: Me ×200, B: BNST ×200, C: Me ×400) and in the diabetic group (D:Me ×200, E: BNST ×200, F: Me ×400) 

A B C

D E F
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Discussion 
 

This study shows that the STZ-induced diabetes 
decreases the retrogradely axonal transport of HRP in 
the Me and BNST projections to the MPOA. Other 
studies showed this reduction as well as cell death in 
peripheral nerves following DM (31). Also, cell death 
was confirmed in our study by TUNEL assay. Here the 
apoptosis was detected in the Me and BNST after 10 
weeks diabetes in agreement with Rizk and Li research 
that observed apoptosis in hippocampus and cortex in 
6-week diabetic rats (32,33). However, Li had not 
observed the apoptosis in the hippocampus after 2 
months diabetes in 2002 (9). In both control and 
diabetic groups labeled, neurons in BNST were more 
than of those in Me. This fact shows more projections 
to MPOA from BNST than Me. So we realize a dense 
interconnection between MPOA and BNST. Although 
the reduction of retrogradely transport has usually be 
seen at the late stages of diabetes after four months 
(34, 35) but we observed this change in 10-week 
diabetic rats in this study. However, the reduction was 
be seen in raphe nucleus-projecting neurons to striatum 
after two months diabetes although it was not 
significant (36). On the other hand marked decreased 
retrogradely transport of neurotrophic protein nerve 
growth factor (NGF) was observed in the sciatic nerve 
in diabetic rats after 2 months (37). The mechanisms of 
these reductions are not known, but some reasons can 
be alterations in access to transportable agent and 
alterations in agent receptors as the significant 
decrease of NGF-receptor saturation was observed in 
Hellweg research (37). These findings suggest that the 
diabetes can decrease transport of each biological agent 
by similar mechanisms. 

We think that the reduced number of neurons and 
their apoptosis in our study were due  to the sensitivity 
of them to changes of blood glucose level (28,29). In 
addition to these changes, some researchers have 
shown that diabetes affects the Me and BNST at 
physiological and neurobiological level (38-40). Many 
studies show these nuclei contribute and control 
reproductive functions via reception and merging of 
chemosensory and hormonal signals (17,18). 
Therefore, deficits in this network can cause 
reproductive dysfunctions that reported as a 
complication of diabetes in many studies (13,41). For 
this reasons, we suspect diabetic effects on these nuclei 
can be a neural mechanism for reproductive 
dysfunctions. In conclusion, our findings demonstrate 

that the diabetes induce apoptosis and affect 
retrogradely axonal transport in projecting neurons 
from Me and BNST to medial preoptic area. 
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