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Abstract- Stem cells are self-renewing and undifferentiated cell types that can be differentiate into 

functional cells. Stem cells can be classified into two main types based on their source of origin: Embryonic 

and Adult stem cells. Stem cells also classified based on the range of differentiation potentials into 

Totipotent, Pluripotent, Multipotent, and Unipotent. Multipotent stem cells have the ability to differentiate 

into all cell types within one particular lineage. There are plentiful advantages and usages for multipotent 

stem cells. Multipotent Stem cells act as a significant key in procedure of development, tissue repair, and 

protection. Multipotent Stem cells have been applying in treatment of different disorders such as spinal cord 

injury, bone fracture, autoimmune diseases, rheumatoid arthritis, hematopoietic defects, and fertility 

preservation.  
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Introduction 
 
How to define stem cells? 

Stem cells are self-renewing and undifferentiated cell 
types that can be differentiate into functional cells (1-5). 
Self-renewal is the process by which stem cells generate 
unfirentiated daughter cells. It is required for preserve 
stem cell populations in different tissues (3,6). 

 
Classification of stem cells 

Stem cells can be classified into two main types 
based on their source of origin: (1) Embryonic stem cell, 
which derived from the inner cell mass of 
preimplantation embryos and has the ability to form all 
three embryonic germ layers (i.e., ectoderm, endoderm 
and mesoderm); (2) Adult stem cells, which scattered in 
various tissues and organs, and has the capability to 
produce at least one type of differentiated functional 
progeny (4,7-10). Although the later type is thought to 
have limited differentiation capability previously, recent 
evidence have shown the capacity of differentiation into 
the 3 embryonic layers (11). Such as induced pluripotent 
stem cells that can be able to generate from a variety of 

somatic cells and give rise into endodermal-, 
mesodermal-, and ectodermal-lineage cells (12,13).  

Stem cells also classified based on the range of 
differentiation potentials (3): Totipotent, Pluripotent, 
Multipotent, and Unipotent. Totipotent cells such as 
Zygote and early Blastomeres (1-3 d from oocyte 
fertilization) have the ability to produce all types of cells 
while pluripotent cells such as inner cell mass of 
blastocysts (days 4-14 after oocyte fertilization) could 
generate all cell types excluding extra embryonic 
trophoblast lineage (3,9,14,15). Telomerase (Tert) 
catalytic subunit which is a landmark of pluripotent and 
germ cells, is express extensively in mouse and human 
oogonial stem cells (16). Also multilineage-
differentiating stress-enduring (Muse) cells are one of 
the other Pluripotent stem cells examples that have 
capacity to generate cell types from all three germ layers 
(17). Multipotent stem cells have the ability to 
differentiate into all cell types within one particular 
lineage (14,15) and unipotent stem cells, are defined as 
cells that have the  competency of differentiating into 
only one lineage (Figure 1) (3). 
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Figure 1. Classification of stem cells 

 
 

Multipotent stem cells 
Multipotent stem cells (MSCs) have the similar main 

characters of other stem cells. Like other stem cells, 
multipotent stem cells are undifferentiated cells that 
have the ability of self-renewing for extended time and 
give rise into specific cells with particular action  . A 
MSC has the ability of differentiation into multiple 
lineages and self-renewing. MSCs act as a significant 
key in procedure of development, tissue healing, and 
defense. Recently, the application of stem cell for 
treatment of numerous disorders like neural and cardiac 
disorders has become a familiar subject with enormous 
guarantee in the upcoming of medical sciences (18,19). 

This kind of stem cell can produce other line of cells 
although it has some limitation in its capacity of 
differentiation. For Example, brain’s MSCs can generate 
dissimilar neural cells and glia or haematopoietic stem 
cells which can differentiate into most of the blood cells, 
but they do not have the ability of production of the 
brain cells. Bone marrow furthermore consists of MSCs 
which can differentiate to all blood cell forms (19). 

MSCs are considered as adult stem cells due to their 
limited ability in differentiation into one or more cell 
lines. However one of the most famous MSC known as 
the mesenchymal stem cell can create a number of cell 
forms. Numerous researches has established that this 

specific stem cell can differentiate in to different tissue 
such as bone, muscle, cartilage, fat, and other related 
tissues (20,21).  

MSCs can fundamentally create particular cell types. 
These kinds of stem cells are different from pluripotent 
stem cells which can produce nearly all cell type, or 
totipotent stem cells which can differentiate in to any 
cell (22). Pluripotent stem cells essentially specialize 
into MSCs, and formerly MSCs produce cells with a 
definite target and role (18,20).  

MSCs are participated in different clinical trials for 
treatment of disorders. also, there are powerful 
researches to realize in what way stem cells can be used 
in order to management of different disorders (23). 
MSCs can move in the direction of the area of tissue 
damage, partially because of the expression of 
chemokine receptors in respond of the increasing 
amount of chemokines at the region of tissue injury (24). 

MSCs have been applying in treatment of different 
disorders such as spinal cord injury, bone fracture, 
autoimmune disorder, rheumatoid arthritis, and 
hematopoietic defects in animal models (25-27). This 
area of research makes extra aspect of stem cell therapy. 
In this field the cells are transplanted to another 
caserepresenting a different allogeneic host instead of 
“self”. Even though this way of management of diseases 

Classification of stem 
cells 

Differentiation 
potentials

Source of 
origin 

Embryonic Adult Totipotent Pluripotent Multipotent Unipotent 
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still continuing, it is important in regenerative medicine 
to protect tissues before transplantation of the organ. 
Mesenchymal stem cells not only are used in tissue 
regeneration, but also be used for monitoring of the 
drugs (28). 

MSCs have been considered as a patient-specific 
drugstores for injured tissue (29). What was initially 
supposed to have effortless ability of differentiation or 
stem commitment of mesenchymal tissue cells has 
established this issue to be a more noticeable and 
compound topic. These days MSCs are recognized to 
derive as pericytes, that have the ability of surveying of 
their domain, act as responder to limited stimulants with 
many useful interventions (30). The accessibility and 
adaptability of these amazing cells create them a great 
therapeutic choice for different part of medical 
approaches, and it becomes interesting topic in the 
scientific researches to found obvious method for the 
most advantageous use of MSC-based therapies (31). 

An important form of MSC that recently researches 
are concentrated on is neural cells. Neural cells 
differentiate to nerve cells, that they don’t have the 
similar revenue level as do other cells such as blood. 
These cells have been isolated from the adult and fetal 
brain tissues, which mean that these cells can 
differentiate into new nerve cells. The suggestions for 
remedy of brain and spinal cord injuries are vast and 
could basically offer a way for treatment of these 
conditions (28,32,33). 

 
Characterization of MSC 

MSCs are originated from different organs of adult 
beings. It is believed that they exist in the most body 
tissues, which they can back up dysfunctional or old 
cells. Therefore, their role is refilling the body’s cells 
through a person’s lifetime (28). 

MSCs are adult stem cells that are created in human 
in a number of mature and embryonic organs, consist of 
adipose (fat), dermis (skin), synovial fluid, periosteum, 
umbilical cord blood, placenta and amniotic fluid 
(20,34-36). In adults, though, the main organs of 
consisting MSCs are bone marrow, adipose tissue ,
dental pulp, and hair follicle (20,36). 

The universal society of stem cell research 
recognized a standard collection of criterion for 
identifying MSCs included (1) plastic-adherent cells; (2) 
the ability of differentiation into tri-lineage including 
bone, cartilage and fat; (3) expression of specific 
markers such as CD105, CD73 and CD90; and (4) 
negative expression for CD45, CD34,CD11b, CD14, 
CD79a and HLA-DR (37). 

Benefits of MSCs 
Meanwhile MSCs are separated from pluripotent 

stem cells; by now these stem cells have incompletely 
differentiated and they endure specifying during they are 
growing. They haven’t been recognized in whole adult 
organs until now. Nevertheless new investigations are 
often demonstrating a detection of MSCs in novel body 
organs (38). Multipotent adult stem cells seem mainly 
beneficial in transplantation. They may be harvested, 
while regularly with trouble, from an individual’s tissues 
and then directed to progress into a definite sort of cells, 
before injected into the identic case. This way prevents 
the immunological problems of pluripotent fetal stem 
cell applications, that immune system of a patient’s 
could possibly refuse a “foreign” tissue. Extra advantage 
of these stem cells is that the ethical problems and 
disagreement related to isolating of fetal stem cells is 
evaded, since fetal tissues or an aborted embryo are not 
required for stem cell therapy (39). 

Some of the MSCs have trophic properties. The main 
trophic possessions of MSCs are the expression of 
growth factors and chemokines to induce cell 
proliferation and angiogenesis. MSCs produce 
mitogenic proteins such as transforming growth factor-
alpha (TGF-a), TGF-b, hepatocyte growth factor, 
epithelial growth factor (EGF), basic fibroblast growth 
factor and insulin-like growth factor-1 (IGF-1) to 
enhance the division of  fibroblast, epithelial and 
endothelial cells (40-42). MSCs are secreting Vascular 
endothelial growth factor, IGF-1, EGF andangiopoietin-
1 to strengthen endothelial cell line and set off 
angiogenesis (43). 

An anti-inflammatory and immunomodulatory action 
is one of the other benefits of MSC. MSCs produce a 
selection of growth factors and anti-inflammatory 
proteins in reaction to inflammatory molecules including 
interleukin-1 (IL-1), IL-2, IL-12, TNF-a and interferon-
gamma (INF-g), that have compound response 
mechanisms amongst the different immune cells (44). 

In addition to properties that mentioned above, these 
cells have anti-apoptotic properties. The anti-apoptotic 
actions of MSCs are not completely identified, but a 
number of important anti-apoptotic proteins have been 
known. IGF-1 and IL-6 production up regulate the 
generation of Akt (protein kinase B) and nuclear factor 
kappa-light-chain-enhancer of activated B cells (18,45). 
 
Isolation and identification of MSCs 

MSCs derived from different tissue including: bone 
marrow, adipose tissue, umbilical cord blood, olfactory 
bulb, deciduous dental pulp and adult tissue such as 
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muscle, testis, etc. (46). 
All these cells do not have the capability to 

reconstruct a complete organ and characterized by quick 
adherence, colony formation, extended proliferation and 

differentiation to all three germ layer. These cells are 
characterized by using a long list of indeterminate 
markers (Table 1) constantly changing in response to 
their microenvironment, both in vitro and in vivo (47). 

 
Table 1. Multipotent stem cells and their markers 

Markers Cell Type 

CD45, 34, 14, 11, 80, 86, 40 , 31, 18 , and 56 Negative for 

Human 
marrow 
stromal cells 

CD105 (SH2), 73 (SH3/4), 44, 90 (Thy-1),  71+, 106, 166, 29, Stro-1 and 
intercellular adhesion molecule-1+ Positive for 

integrins α1, α5 and α1 
High 

expression 

integrins α2, α3, α6, αV, β2 and β4 
Low 

expression 

integrins α4, αL and β2 
No 

expression 

CD45 Negative for 

VSELs 
SSEA-1, Oct-4, Nanog, Rex-1, Sca-1, CXCR4, Stella and  Fragilis Positive for 

CD31 and Stro-1 Negative for 
Adipose stem 
cells P75NTR,CD9, 10, 13, 29, 34, 44,  49d,  49e, 54, 55, 59,  105, 106, 146, 

and 166 Positive for 

CD14, 45, 34 Negative for 
Dental pulp 
stem cells Stro-1, SH2, 3 and 4, CD29, 44, 166 Positive for 

CD24 and 34 Negative for Keratinocyte 
stem cells CD73, 44 and 90 Positive for 

 
 
One of the most important sources for MSCs is bone 

marrow (BM). Bone marrow contains a heterogeneous 
population of cells: hematopoietic stem cells, marrow 
stromal cells, endothelial progenitor cells and very small 
embryonic-like stem cells (VSELs) (48). Among them 
marrow stromal cells and VSELs are multipotent stem 
cells. There are some differences between these two 
cells. Marrow stromal cells have small cell body and 
few process (fibroblast like cells), but VSELs are very 
small in size and formed sphere-like colonies in vitro 
(49).  

For a long time the adherent nature of marrow 
stromal cells has been used to isolate these cells from 
total bone marrow cells (47). By this method a 
population of fibroblastic cells will isolate, but these 
cells are heterogeneous by different biological 
properties. Some studies have been focused on isolating 
a purified population of marrow stromal cells from bone 
marrow. In this regard, some antibodies have been used 
to isolate this subpopulation including: SB-10, STRO-1, 
SH-2, and HOP-26. These antibodies react with non-

hematopoietic progenitor bone marrow stromal cells. 
Unfortunately, there are no specific markers for these 
cells (50). It is believed that adult human marrow 
stromal cells do not show the hematopoietic markers 
such as CD45, CD34, CD14, or CD11. In addition the 
co-stimulatory molecules like CD80, CD86, or CD40 do 
not exist on these cells.  Among the adhesion molecules 
studied, CD31 (platelet/endothelial cell adhesion 
molecule-1), CD18 (leukocyte function-associated 
antigen-1), and CD56 (neuronal cell adhesion molecule-
1) do not express on the human marrow stromal cells but 
CD106 (vascular cell adhesion molecule-1), CD166 
(activated leukocyte cell adhesion molecule), 
intercellular adhesion molecule-1, and CD29 were found 
on these cells. Another markers expressed on these cells 
are CD105 (SH2), CD73 (SH3/4), CD44, CD90 (Thy-1), 
CD71, and Stro-1 (51). Waller et al., (52) isolated a 
population of CD34-, CD38-, HLA-DR-, and CD50- 
from fetal bone marrow by fluorescence-activated cell 
sorting. This fraction showed marrow stromal cells 
characteristics. Marrow stromal cells exhibit high 
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expression of integrins α1, α5 and α1, low expression of 
α2, α3, α6, αV, β2 and β4, and no expression of α4, αL 
and β2. Human MSCs also express HLA-ABC and not 
HLA-DR but the latter is upregulated following 
treatment with interferon (50). It has been claimed that 
for isolating a purified marrow stromal cell more than 
one marker should be used. 

VSELs are other multipotent cells in bone marrow. 
These cells could mobilize in peripheral blood in 
response to injury. VSELs are SSEA-1+, Oct-4+, 
Nanog+, Rex-1+, Sca-1+, CD45- (49). In addition these 
cells express some features of primordial germ cells 
such as CXCR4, Stella and Fragilis, so, it seems that 
VSEL stem cells are the progeny of epiblast cells (48). 

Adipose tissue, like bone marrow contains a 
supportive stroma that is easily isolated from human 
lipoaspirates. Like the other multipotent stem cells, 
adipose stem cells (ASCs) don’t have specific cell 
marker. After lipoaspiration, and enzymatic digestion, it 
is possible to use different antibody by FACS or 
magnetis activated cell sorting methods. Previous 
studies showed that human ASCs could be isolated as 
CD34-positive cells/CD31-negative cells by using 
magnetic beads. Another study suggests that the cell 
membrane protein p75NTR is a useful indicator of 
ASCs (53). Human adipose stem cells were analyzed by 
flowcytometry and immunocytochemistry and these data 
showed that ASCs have a protein expression phenotype 
similar to bone marrow stromal cells except one 
difference. They express CD9, CD10, CD13, CD29, 
CD34, CD44, CD 49d, CD 49e, CD54, CD55, CD59, 
CD105, CD106, CD146, and CD166. STRO-1 has not 
been detected on human ASCs (54,55). 

Another source of multipotent cells is dental pulp. 
The stem cells derived of dental pulp could be isolated 
from the pulp chamber of each tooth. Different types of 
antibodies were used for characterization of these cells. 
After primary culture, data analysis revealed that these 
cells do not express not only the hematopoietic markers 
such as CD14, CD45 and CD34 but also some of the 
smooth muscle, neuronal, cartilage and fat markers. 
These cells show expression level of vascular cell 
adhesion molecule 1, MUC-18 (CD146), a-smooth 
muscle actin, alkaline phosphatase, type I collagen, 
osteonectin, osteopontin, and osteocalcin, type III 
collagen and fibroblast growth factor 2 (56). Some 
evidences showed that these cells also express STRO-1 
(like marrow stromal cells), CD29 and CD44 (57). Flow 
cytometric analysis showed that dental pulp stem cells 
and bone marrow stem cells were equally SH2, SH3, 
SH4, CD29 and CD 166 positive (58). 

Hair follicles contain keratinocyte stem cells 
(KSCs) and capable to reconstitute themselves 
throughout life. These cells localize in the outer root 
sheath (ORS). The expression levels of WNT 
inhibitors, WIF1 and DKK3 increase in ORS. The 
activin/ bone morphogenetic protein (BMP) signaling 
antagonist FST was selectively overrepresented in the 
bulge ORS. The blockade of activin signaling by FST 
may also promote maintenance of KSC quiescence. 
Another upregulated transcript, angiogenic factor 
ANGPTL2, may also support development of 
vasculature and nutrition of bulge ORS cells. These 
cells do not express CD24; it could be used for KSCs 
enrichment (59). KSCs similar to marrow stromal cells 
areCD44+, CD73+, CD90+, and CD34–, and have a 
population doubling time of 27 h (60). 

 
Application of MSC 

One of the challenging contentions that scientists 
should determine is whether or not a MSC has 
essentially the ability of specialization into a cell kind 
different from the tissue which is derived. Present 
studies on MSCs, though, is now denying the acceptance 
that MSCs have the limitation in differentiation into the 
cell types consistent to their original tissues. These stem 
cells seem to have the potency which surpass the 
formerly supposed restrictions for generating different 
cell types, although they perform uncommonly and only 
under the constricted situations (37). 

To recognize this process, the topic of stem cell 
plasticity has to be purposed. Plasticity of stem cells is a 
phrase that explains the fact of adult stem cells derived 
from one organ producing the particular cells of another 
organ. Extensively, it has been supposed that adult stem 
cells are tissue-specific, thus they only differentiate to 
cell kinds in the tissues they are locating (34,37). This 
potential result of plasticity can be applied in stem cell 
therapy. It means that if researchers can arrange this 
differentiation, for example, a blood stem cell could be 
applied as a substitute for other tissues. Though, there 
are plentiful debates that must be overwhelmed before 
this belief can be used in clinic. Nowadays, it seems 
more reasonable that MSCs will have applied usage in 
their originating tissues (37,39). 

MSCs can be able to differentiate into several cell 
lines, including osteoblasts, chondrocytes, adipocytes, 
and myocytes. The highly multipotent cell populations 
are a respected origin of cells that can be developed as 
an option in the clinic. In this part we present recent 
clinical and preclinical use of MSCs (61). 
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Cardiovascular diseases 
Cardiovascular diseases cause death of heart tissue, 

and the capacity of replacement of these affected 
myocardial tissue is a vital aim in tissue engineering 
(62). MSCs transplantation has been revealed to 
significantly recover cardiac function (end systolic and 
diastolic volumes, and left ventricular ejection fraction) 
in several animal models (63,64) and a reduced 
mortality rate (63). The cell transplantation has a lot of 
practical advantages such as reduction of the 
development of heart failure, improvement of the overall 
action, and rise of the local wall movement. 

The mechanisms of these beneficial effects are not 
exclusively clear, but it is considered as the result of 
improved myocardial perfusion, recovery of scar, 
regeneration of cardiomyocytes, and enrolment and 
activation of endogenous progenitor cells (65,66). 
Bollini et al., (67) was established the therapeutic 
potential of amniotic fluid stem cell (AFSCs) as a 
multipotent stem cell for severe heart attack. In this 
investigation, ischemia in Wistar rats has been induced 
by 30 min left anterior descending coronary artery 
ligation, and then AFSCs were administrated.  As a 
result, AFSCs could prevent myocardial cell death and 
decrease the necrosis extent. Further researches have 
been recognized AFSCs which are labeled  with iron 
oxide particle in the mouse heart 28 d after 
transplantation (62). Lee et al., (68) applied AFSCs to 
produce cell bodies that were arranged spherically 
symmetrical, and were transferred in the periinfarct 
region of myocardium directly in an immune-suppressed 
rat.  

Medical experiments have been applied in acute 
heart tissue infarction (MI), ischemic cardiomyopathy, 
and heart dysfunction. Experimental procedure have 
been performed via intravenous stem cell therapy (69), 
intracoronary cell infusion (70), and intramyocardial 
injection (71). The other clinical usages of MSCs are in 
the field of cardiovascular disorders. In 2012, Traverse 
et al., (72) studied on 87 cases with acute left ventricle 
(LV) defection. They have shown that there are no 
meaningful variances in LV ejection fraction or extent 
of tissue death between placebo and autologous bone 
marrow stem cells infusion. Lately, direct myocardial 
injection of autologous cultured bone marrow 
mesenchymal stem cells resulted in constant recovery in 
exercise capacity, beneficial tissue remodeling, angina 
attack frequency and nitroglycerin consumption at one 
year after transplantation (71,73). 

In a randomized, double-blind, placebo-controlled 
study, intravenous allogeneic MSCs transplantation 

examined in 53 cases with severe MI. MSCs were 
injected in peripheral intravenous path during 10 d of 
percutaneous intervention for MI. The allogeneic cells 
was carefully tolerated (74). Advantages were informed 
for left ventricular ejection fraction and converse 
renovation in patients with anterior infarcts and, 
furthermore, there was sign of a decrease in arrhythmic 
problems in six month fallow-up (69). Chen and 
colleagues studied the consequences of autologous BM-
MSCs therapy in patients with subacute MI. They 
reported that the perfusion defects improved 3 mo after 
BM-MSCs transplantation by positron emission 
tomographic imaging, and left ventriculography proved 
improvement of ejection fraction (EF) and LV cavity 
sizes between MSCs-treated cases and placebo group. 
Prominently, this investigation presented that 
intracoronary MSCs infusion in patients with acute MI 
was harmless, and there were no deaths and no 
arrhythmias through the follow-up (70). In a clicical trial 
study, eight ischemic cardiomyopathy patients received 
transendocardial injection of autologous BM-MSCs in 
LV scar and border zone. There are no serious adverse 
events in the procedure (71). In a multicenter, 
randomized MSCs study has been shown that left 
ventricular end-systolic volume reduce in patients with 
ischemic heart desease who received intramyocardially 
autologous BM-MSCs. Furthermore, cell therapy 
improved the 6-min walk distance, quality of life, 
physical performance in these patients (75,76). 

 
Liver disease 

In some liver diseases such as fulminant hepatic 
failure (FHF), the only effective treatment option is 
orthotopic liver transplantation but this treatment needs 
long term immunosuppressive therapy, suitable organ 
donor and high costs. Stem cell therapy might be an 
appropriate treatment for this disease. Previous studies 
transplanted MSCs-derived hepatocytes and 
undifferentiated MSCs into immunodeficient mice with 
liver failure. This treatment could decrease oxidative 
stress and promote repopulation of hepatocytes (77). In a 
rat model of acute liver injury, systemic infusion of 
MSCs had following advantages: prevent the release of 
liver injury biomarkers, reduce the apoptotic cell 
number, and increase the hepatocytes proliferation (78). 
It seems that the peri-portal area is the desired region for 
the transplanted MSCs (79). In response to partial 
hepatectomy, adult liver MSCs proliferated and 
participated in liver regeneration of recipient mouse. 
MSCs infusion could improve the liver function and the 
quality of life of patients with liver cirrhosis, hepatitis B, 
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hepatitis C, alcoholic liver disease, and cryptogenic 
fibrosis without severe adverse effects (80-82). In liver 
failure MSCs transplantation have short-term efficacy, 
although long term outcomes were not affected (76,83). 

 
Inflammatory bowel diseases 

Crohn disease, a type of inflammatory bowel 
disease, is caused by a combination of immune and 
bacterial factors. There are no treatment options for 
patients with Crohn disease (62). Because of 
immunomodulatory properties of placental MSCs, stem 
cell therapy has developed as a new treatment for 
patients with resistant Crohn disease (62). Recently, 
stem cell therapy in patients with Crohn disease could 
become effective on reducing the signs of disease and 
this treatment did not show any side effects and 
toxicities (62). 

One phase I trial was conducted to treat Crohn’s 
fistulas with autologous adipose-derived MSCs. Eight 
fistulas in four patients were injected with MSCs.  

In numbre of these fistulas, external openings were 
enclosed with epithelium at the end of week 8, and other 
fistulas were healed with a decrease in output flow (84). 
Also this group was confirmed the therapeutic 
achievement of MSCs therapy in a phase II trial of this 
study. Patients with complex perianal fistulas were 
randomly assigned to treatment with fibrin glue or fibrin 
glue plus adipose-derived MSCs. This study proved a 
significant superiority on fistula occlusion of 71% vs 
16% in fibrin glue alone (85). In one study, BM-MSCs 
were isolated from patients with Crohn’s disease 
exhibited morphology, phenotype and proliferation 
ability similar to MSCs from healthy peoples. Three 
patients showed clinical responses with CDAI decrease  
conversely 3 patients required surgery because of 
disease worsening (86). Ciccocioppo et al., (87) 
documented the efficacy of intrafistular injections of 
autologous BM MSCs every 4 wk (in 10 Crohn’s 
disease patients). Sustained complete closure was 
observed in 7 patients and an incomplete closure in 3 
patients (76,87).  

 
Osteoarticular diseases 

There are numerous clinical trials in the field of 
multipotent stem cell therapy. One of the most usable 
stem cells is MSC. A number research groups have 
established the use of MSCs in orthopedics therapies 
(88, 89). 

Preclinical studies on mice have shown that the 
scaffolds coated with AFSC could accelerate bone 
mineralization (90). Micro computed tomography 

scanning analysis of constructs confirmed the formation 
of the hard tissue within the scaffold and an increasing 
in thickness of new bone appeared at the implantation 
place. Scaffolds are useful to promote bone regeneration 
after major injuries. These studies confirmed that 
AFSCs could contribute in improvement of bone 
generation after injury (62,91).  Micro-CT and 
histomorphometry results in mouse model of segmental 
bone fractures proved that mobilization of BM-MSCs  
caused significant augmentation of bone growth (92).  

Because of the unique properties of MSCs, these 
cells are a valuable tool for cartilage regeneration. 
Among the various sources for MSCs, BMSc is the best 
choice for this purpose. The chondrogenic capability of 
stem cells derived from adipose tissue is lower than 
BMSCs because the cartilage derived from these cells 
has low content of collagen type II (46). For in vitro 
differentiation of BMSCs to chondroblasts some growth 
factors such as TGF and BMP should be added to the 
culture medium. The differentiated MSCs expressed 
chondroblast markers and could be used for treatment of 
OA and rheumatoid arthritis (93,94). In one study, 
MSCs and hyaluronic acid injected into the article could 
accelerate cartilage regeneration (95). Also BMSCs in 
combination with synthetic extracellular matrix could 
completely repair the defect in rabbits with 
osteochondral disease (96). In other study using BMSCs 
transplantation in patients with osteochondral disease 
could improve their cartilage condition (97,98).  

A study showed stem cells combined with platelet 
rich plasma (PRP) accelerate bone regeneration in oral 
implantology surgeries. This combination has shown 
higher capacity than PRP alone to promote bone 
regeneration (99). 

 
Autoimmune disease 

Ditadi and colleagues established that AFSCs have 
the ability to differentiate into hematopoietic line cells 
consist of erythroid, myeloid, and lymphoid cells in 
vitro. This issue suggest that AFSCs can be a practical 
origin of cells to restore the hematopoietic system (100). 
They have found AFSC-derived macrophages, NK, B, 
and T cells (both CD4  and CD8  ) 4 mo after AFSC 
transplantation into immunodeficient RAG1_/_ 
C57BL/6 (Ly5.1) mice. Subordinate AFSC 
transplantation was partly effective, which are 
commending the existence of a little amount of 
hematopoietic progenitor cells in the population of 
multipotent AFSC. These transplantation trials showed 
that AFSCs have longterm ability of the hematopoietic 
regeneration in vivo and potential therapeutic uses for 
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the management of blood and immune diseases (100). 
The immunomodulatory properties of MSCs make 

them an ideal tool for treating autoimmune diseases. In 
systemic lupus erythematosus (SLE) cases, there are 
contradictory outcomes on the therapeutic application of 
MSCs. In one study, two young lupus patients were 
received intravenously one dose of 1 million/kg 
autologous BM-MSCs (101). During 14 wk of follow-
up, there were no opposing effects or changes in SLE 
disease activity. One case with preceding kidney 
involvement, 4 mo fallowing the cell transplantation, 
had a renal flare needing methylprednisolone and 
cyclophosphamide (101). Liang and colleagues have 
described intravenous injection of 1 million/kg MSCs 
into 15 patients including three children with insistently 
acute SLE. They have reported the improvement of all 
patients clinically after MSCs therapy (102). The similar 
group as well investigated whether double MSCs 
injection is more advantageous than single cell 
transplantation. In this study, 58 severe SLE patients 
consist of a number of children were registered, in 
which 30 cases accidentally received a single dose of 
MSCs, and remaining cases received two doses of 
MSCs. These cases were checking out for survival 
amounts, disease relief, and regeneration, in addition to 
the adverse events related to transplantation. The 
consequences revealed that there are not any significant 
differences between the single and double doses of 
MSCs transplantation after one year follow-up (103). 
The amount of mesenchymal progenitor cells which are 
exist in the synovial fluid in patients with rheumatoid 
arthritis is decreased (104). This fact can be described 
via the reduced enrolment of MSCs in the joint (105) or 
an inhibited proliferation ability of MSCs (106) related 
to reduced telomere size (76,107).  
 
Type 1 diabetes 

The World Health Organization estimates 347 
million people worldwide have diabetes. As many as 3 
million Americans may have type 1 diabetes (T1D), and 
each year, more than 15000-40000 children are 
diagnosed with T1D in the United States (108). Recent 
management for diabetes mellitus depend on regular 
several insulin injections, or use of insulin pump, or β-
cell or whole pancreas transplantation (62). Wei et al., 
(109) established that hAECs can be induced for 
expression of insulin and GLUT-2 mRNA, and they 
studied the capacity of hAEC for restoration of glucose 
levels in blood of diabetic mice. In the hAEC-treated 
mice, level of glucose in blood has been declined to 
standard range post transplantation. Also, the body 

weights of transplanted animals return to normal in 
comparison with not hAEC-treated mice. Chang and 
coworkers proved that MSCs which were derived from 
placenta can be able to make insulin and glucagon (110). 
The use of MSCs for the cure of T1D due to their ability 
to differentiate into insulin producing cells and 
immunological characteristics (111). Hisanaga et al., 
(112) reported that addition of activin A and betacellulin 
accelerated MSCs differentiation, and immunoreactive 
insulin was detected 14 d after the treatment. Another 
study (113) showed that MSCs, when cultured in well-
defined circumstances, may be able to differentiate into 
cells with the capacity of producing insulin. 
Additionally, these insulin-secreting cells made masses 
which, after injection to mice, developed manner 
comparable to islets of Langerhans. These masses 
expressed endocrine gene of insulin (I and II), glucagon, 
somatostatin, and pancreatic polypeptide. 
Immunohistochemistry analysis as well proved that 
these masses expressed the insulin, somatostatin, 
pancreatic polypeptide and C-peptide (113). ELISA 
assays in the diabetic/severe combined 
immunodeficiency (NOD/SCID) mouse model verified 
that blood levels of mouse insulin increase in the human 
MSCs-treated in comparison to  untreated diabetic mice. 
Moreover the numbre of pancreatic islets and β cells 
producing mouse insulin have been increased. Most of 
the β cells in the islets were mouse cells that secreted 
mouse insulin (114). Few clinical trials using MSCs for 
T1D are ongoing (76).  

 
Lung diseases 

Respiratory disease is an important reason of illness 
and death. The reasons of respiratory disorders are vary, 
but the conclusion of the subsequent organ damage is 
equivalent. These problems are consisting of chronic 
inflammation, fibrosis, and scarring which causes 
dysfunction of lung tissue. Amniotic epithelial cells 
have indicated that they have the potential of using  in 
the treatment of different disorders like cystic fibrosis, 
pulmonary fibrosis, chronic obstructive lung disease, 
acute respiratory distress syndrome, pulmonary 
hypertension, and pulmonary edema (62). The 
transplantation of human amniotic epithelium cells 
(hAECs) in animal models of lung disease,  has been 
exposed to decrease both inflammation and following 
fibrosis besides improving lung function (115). 
Transplantation of hAECs in mice with bleomycin-
induced lung disease caused decrease in gene expression 
of proinflammatory cytokines tumor necrosis factor-α, 
transforming growth factor-β, interferon-γ, and 



Clinical applications of multipotent stem cells  

14    Acta Medica Iranica, Vol. 55, No. 1 (2017)  

interleukin-6, reduced pulmonary collagen deposition, 
α-smooth muscle actin expression, and inflammatory 
cell infiltrate (116). Current researches have made 
hAECs to express lung-specific proteins consist of the 
ion channel cystic fibrosis transmembrane conductance 
regulator, proposing the noticeable  use of hAECs for 
the treatment of patients with cystic fibrosis (62). 

Ortiz et al., (117) reported that exogenous 
administrated MSCs in a mouse bleomycin-induced lung 
injury model  could be found in the injured lungs and 
these cells seemed to accept characteristics of epithelial 
cells. MSCs injection closely after exposure to 
bleomycin also meaningfully decreased the grade of 
bleomycin-induced inflammation and collagen 
precipitation in lung tissue. Conservation was related to 
the transformation of engrafted MSCs into particular and 
different lung cell phenotypes, with a surge in ranges of 
G-CSF and GM-CSF and a decline in inflammatory 
cytokines (118). In a mouse acute lung injury model 
(lipopolysaccharide (LPS)-induced), demonstrated that 
MSCs suppressed the LPS induced increase in 
circulating proinflammatory cytokines lacking of 
reduction in circulating stages of anti-inflammatory 
mediators. Histological analysis revealed that MSCs, but 
not fibroblasts, significantly reduced lung neutrophils at 
6,24, and 48 h after LPS treatment (76). Mei et al., (119) 
found that albumin, total protein, and immunoglobulin 
M in BAL were increased 3 d after intratracheal LPS 
and the phenomena were attenuated by MSCs infusion. 
MSCs transfected with angiopoietin-1 caused additional 
development in both alveolar inflammation and 
permeance. Krasnodembskaya et al., (120) reported that 
MSCs have antibacterial action in a mouse model of 
pneumonia. They described that mice received live E. 
coli intratracheally had higher BAL lavage protein after 
18 h, and BAL protein was expressively reduced by 
intratracheal injection of MSCs 4h later.  

Numerous investigations evaluated the potential of 
MSCs as a treatment strategy for Cystic fibrosis (CF). 
Wang et al., (121) recognized that MSCs have the 
capacity of differentiation into respiratory epithelia. 
MSCs therapy for CF patients caused CFTR gene 
modification, and expression of CFTR does not affect 
the multipotency of MSCs and are able to contribute to 
apical chloride secretion in response to cAMP agonist 
stimulation, signifying the option of emerging cell-based 
therapy for CF. Another study (122) found that MSCs 
from cord blood which  cultured in specialized airway 
growth media or with specific growth factors  can 
differentially expressed mRNA for Clara cell secretory 
protein, CFTR, surfactant protein C, and thyroid 

transcription factor-1. Additionally, systemically 
administrated cord blood-MSCs can migrate to the 
airway and alveolar epithelium of immunotolerant 
(NOD/SCID) mice and gain CFTR expression (76). 

 
Renal disease  

Regenerative therapy of kidney disease and severe 
kidney damages can prevent the necessity of the dialysis 
and/or kidney transplantation in some patients. Perin et 
al., (123,124) established that AFSCs can afford to 
development of kidney both ex vivo and in vivo. AFSCs 
have been injected into the injured tubules in a mouse 
model of acute tubular necrosis, and supply a protecting 
impact. Consequently in these animals, levels of 
creatinine and urea nitrogen in blood decreased and the 
number of damaged tubules decreased. This useful 
impact of AFSCs was also associated with meaningful 
rises in proliferative action of tubular epithelial cells, 
reduction cast creation, and decrease of apoptosis in 
tubular epithelial cells (62). 

 
Neural regeneration 

One of the main objectives of regenerative medicine 
is the permanent improvement of demolition of the brain 
tissue via exploiting of stem cells in order to regulate the 
procedure of neurogenesis (62). In the twitcher mouse 
model of neurologic disease the transplantation and 
continued existence of AFSCs in the rodent brain was 
confirmed (90). These mice have lack in the lysosomal 
enzyme named galactocerebrosidase so they are 
suffering from wide neurodegeneration and neurological 
destruction, beginning with the malfunction of the 
oligodendrocytes. AFSCs have been engrafted straightly 
into the lateral ventricles of the growing brain of a 
neonatal mouse and stay alive and take part into the fetal 
mouse brain. Rehni et al., (125) emphasized the ability 
of AFSCs in Ischemic stroke induced in mice. In this 
study, ischemia is induced by middle cerebral artery 
occlusion and reperfusion and causes cerebral injury and 
makes behavioral disorders included distinctly reduced 
memory, motor coordination, sensorimotor skills, and 
somatosensory functions in mice. Current clinical 
researches recommend that AFSCs can play significant 
roles in the treatment of degenerative or behavioral brain 
disease such as stroke, Parkinson disease, Alzheimer 
disease, and spinal injuries (62,126). 

 
MSCs and male infertility 

There are few cells in the normal human testis, 
which are significant for spermatogenesis that is 
complex procedure. The key cells are consist of germ 
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cells with different developing steps, Sertoli cells placed 
in the seminiferous tubules, and interstitial Leydig cells 
secreting hormone named testosterone, which is 
essential for typical procedure of spermatogenesis (127). 

These preserving stem cells are responsible for 
maintaining spermatogenesis. They have an unexpected 
ability in clinical applications for treatment of infertility. 
In the testis, stem cells are adjusted by special 
microenvironments recognized as niches. 
Spermatogonial stem cells (SSCs), which are male germ 
line stem cells, able to constantly create sperm through 
the adulthood (128). Recently, a small number of 
methods have been presented in order to maintaining 
reproduction in prepubertal boys and adults. In most of 
these strategies SSCs have been applied in the treatment 
of infertility (127). 

 Many couples encounter infertility and look for help 
for their unwanted childlessness. Stem cells able to 
differentiate into several practical cell types and their 
finding have created the fields of regenerative medicine 
and cloning. Researchers have required developing ways 
using stem cells to recover fertility. Stem cells have the 
ability of differentiation into the most of the cell type 
available in the body. During the differentiation, stem 
cells have lost this plasticity; however, some tissues. In 
fact, adult stem cells have been functionally identified in 
a wide range of tissues, and are believed to hold great 
promise for tissue regeneration. We focus here on the 
therapeutic potential of stem cells for the treatment of 
male fertility (129). 

Spermatogenesis is a multiparts and firmly regulated 
procedure in which a number of germ-line stem cells 
give rise in to finally form spermatozoa (130). These 
stem cells, known as SSCs are located in the basal 
section of the epithelium that covers the seminiferous, 
and they stay on the basement membrane. SSC self-
renewal ensures the preservation of the large amount of 
stem cells, as their differentiation creates a large number 
of germ cells. Consequently, an equilibrium among the 
self-renewing and differentiating of the SSC in the 
mature testis is necessary to sustain normal 
spermatogenesis and fertility during life (131). 

In vitro expansion of germ cells from stem cells to 
generate mature sperm which can be able to contribute 
in the standard embryo and fetal development has been 
tried in the last decade. These days, different 
investigations have indicated the differentiation of the 
embryonic or somatic stem cells of the mouse and 
human into male gametes. However, the exact function 
of these structures still needs to be confirmed (132). 

Different researches have been shown MSCs can 

differentiate into either germ line stem cells or early 
germ cells in vitro and develop male gametes in vivo 
after transplantation (133-136). 

In 2006, Nayernia et al., (137) established that MSCs 
derived from bone marrow of mice are able to generate 
germ line stem cells in vitro. MSCs-derived germ line 
stem cells ,like germ line stem cells differentiated from 
teratocarcinoma and ESCs, stop at premeiotic levels 
leading transplantation into the testes of adult infertile 
mice (137). Newly, these researchers have published 
that human bone marrow stem cells may be able to 
differentiate into the male gamete from (135). Though, 
they are not able to study the functional capability of 
these cells (132). 

One of the other approaches that recently have been 
used a lot is multipotent stem cell transplantation in the 
testes. In 2007, Lue et al., (138) also published that 
transplantation of  bone marrow stem cells into the testis 
can be useful implication for infertile men. However, 
different study demonstrated the useful consequences of 
transplantation of mesenchymal stem cells into the testes 
of sterile cases (139,140).  

 
MSCs and female infertility 

Nowadays stem cells, as new source in diseases 
treatment especially infertility, are notable for 
researches. Stem cells, as undifferentiated cells, are 
presented in different tissues including: the embryonic, 
fetal, and adult stages of life and play important role in 
renewal of tissues and organs. 

Approximately 15% of couples are suffering  
infertility (141). Advances in stem cell science have 
created new hopes in the treatment of infertility. 

Currently, this idea about ovary capacity for oocyte 
production has been challenged in during lifetime of 
female mammalian (142). Zuckerman et al., (143, 144) 
believed that the oocyte production by female 
reproductive system is stopped during the postnatal 
period. 

In 2004, Johnson et al., (145) suggest in fact 
oogenesis and follicugenesis continue over the life of 
female mammalians. These findings predicate new 
treatments for infertility caused by aging, ovary 
insufficiency, premature ovarian failure (145).  

There are different source for obtaining stem cells 
included cleavage or blastocyst stages of embryo 
(embryonic stem cells, ESC), extra-embryonic tissues 
(umbilical cord) (146), the placenta (147), and also the 
amniotic fluid (90). In addition those can be found in 
adult tissues among bone marrow (148), blood (149), fat 
(39), skin (150), and also the testis (151). 
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In the past several years, many attempts have been 
made toward producing germ cells from stem cells. 
Currently, there are several reports in relation to this 
subject. At the beginning of the previous decade, several 
studies showed production oocyte and sperm from 
embryonic stem cells in vitro (152-155). Then Geijsen et 
al., (155) showed that these gametes are able to develop 
to embryo. Also it is reported follicle production from 
germline stem cells obtained from mouse ovary by 
Johnson et al., (145). Particularly, other studies have 
been demonstrated ovary surface epithelium as source of 
stem cells (156-158), so that Gene expression profiling 
confirmed that ovary surface epithelium is a possible 
foundation of cells with the markers of 
pluripotency/multipotency (159). 

Not only neo-oogenesis is possible by mentioned 
pluripotent stem cells but also this that is by multipotent  
stem cells, specifically  bone marrow and peripheral 
blood (160).  

BM and peripheral blood as extragonadal sources of 
germ cells was introduced by Johnson et al., (160). This 
group can show to recover oogenesis in infertile mice 
models using transplantation of BM cells and peripheral 
blood (160). It is demonstrated germline specific 
markers is expressed in BM of adult mice including 
Oct4, Mvh, Dazl, Stella, Fragilis (161). Also it was 
detected specific markers of female germ cell homeobox 
gene Nobox in BM of adult females (162). In parallel 
studies, quantitative assessment releavedMvh expression 
level alters in BM during the female reproductive cycle 
(160).  

Although BM is a major source of multipotent stem 
cells, but this procedure is invasive and also obtained 
cell numbers is low. Thus these problems caused to use 
other sources (163). 

Induction of fetal porcine skin-derived stem cells 
revealed their capacity to differentiate into oocyte-like 
cells (OLCs). Confirmation of the differentiation was 
done by expressed markers such as Oct4, GDF9b, and 
DAZL. Indeed it is shown if the subsequent 
differentiation was continuing, they would become into 
follicle-like aggregates, so that secretion of estradiol and 
progesterone is detected in OLCs (164). 

  In 2011, Song S. H et al., (165) in a study on 
porcine multipotent stem/stromal cells obtained from 
skin, adipose, and ovarian tissues presented that they can 
differentiate into putative oocyte-like cells. This 
researcher group was able to show skin stem/stromal 
cells (SSCs), adipose stem/stromal cells (ASCs), and 
ovary stem/stromal cells (OSCs) are similar in 
characteristics morphology, alkaline phosphatase (AP) 

activity, cell cycle stage, the expression of cell surface 
and pluripotency related markers. In addition, capacity 
of them in forming of oocyte-like cells (OLCs) was 
proven using differentiation medium under experimental 
conditions (165).  

Also Irma Virant-Klun et al., (166) isolated cells 
with the characteristics of pluripotent/multipotent stem 
cells from adult human ovaries. This researcher team 
was able to show expressing markers of pluripotency 
(alkaline phosphatase, surface antigen SSEA-4, OCT4, 
SOX-2, NANOG, LIN28, STELLA), germinal lineage 
(DDX4/VASA) and multipotency (MCAM/CD146, 
Thy-1/CD90, STRO-1) using different methods (166). 

As well in other study was demonstrated that ovarian 
theca-derived multipotent stem cells (TSCs) had high 
proliferative potential and these cells were able to 
differentiate into mesenchymal lineages and OLCs. Cell 
surface markers expression is detected (CD29, CD44 
and CD90) on TSCs, while pluripotent markers were not 
express except SOX2. However under in vitro 
conditions, in order to differentiation into OLCs were 
detected that transcription factors consist of OCT4, 
NANOG and SOX2, specific marker of oocyte genes 
such as GDF9B, C-MOS, DAZL, VASA, ZPC, SCP3 
and STELLA and the marker of folliculogenesis named 
follicular stimulating hormone receptor expressed. 
These results support the ability of ovarian theca-derived 
multipotent stem cells as new source in oogenesis (167).  

Finely, fertility restoration by neo-oogenesis in 
during postnatal can be used in many cases among 
cancer patients, premature ovarian failure, and gonadal 
tissue cryopreservation options. 

Obviously there are numerous debates about the 
overcoming of the safe use of multipotent stem cells, 
nevertheless the advantages of these cells are abundant 
so they have been considered as a potential for treatment 
of diseases. Also the use of these stem cells does not 
have the problems such as ethical issues which are 
considered for pluripotent and totipotent stem cells. 
Although support of these cells for research and 
therapeutic applications is expected to need more time? 
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