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Abstract- Treatment of spinal cord injury by exogenous cells has brought both successful and unsuccessful 

results. Olfactory ensheathing cells and Schwann cells have been widely used for transplantation purposes. In 

this study, we investigated the effects of these cells on contused spinal cord by introducing cells into 

subarachnoid space. Fifty thousand Schwann cells or olfactory ensheathing cells or a mixture of both cell 

types were transplanted one week after a 3-second clip compression injury at T-9 spinal cord level in rats. 

Starting from the day one of spinal cord injury, animals were assessed for six months by BBB test and then 

were sacrificed for immunohistochemistry labeling of the spinal cord injury site. There was no locomotor 

recovery in any of the treatment groups including controls. Immunohistochemistry assessment indicated 

positive labeling of P75 and S100 markers in the cell-transplanted groups compared with control. Our data 

suggest that transplantation of Schwann cells and/or olfactory ensheathing cells into the subarachnoid space 

does not improve motor recovery in severely injured spinal cord, at least with the number of cells 

transplanted here. This, however, should not be regarded as an essentially negative outcome, and further 

studies which consider higher densities of cells are required.  

© 2016 Tehran University of Medical Sciences. All rights reserved.  
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Introduction 
 

Transplantation of Schwann cell and Olfactory 
Ensheathing Cell (OEC) has shown promising results in 
animal models of spinal cord injury (1-3). These cells 
have functions such as secretion of growth factors, axon 
guidance, myelination and structural support (4). Previous 
studies suggest that these two cell types behave 
differently in vitro or in vivo when transplanted into the 
demyelinated CNS (5). Transplantation of Schwann cell 
in injured spinal cord has yielded beneficial results in the 
functional and structural recovery of spinal cord lesions 
(6-10). Other studies provide evidence that transplantation 
of OECs improves motor function either in contusion 
(11,12) or transection models (13,14). OEC also improves 

functional properties of lesioned dorsal column in an 
animal model of spinal cord injury (15). However, these 
cells are not always beneficial for regeneration purposes 
(5,16-19). Despite contradicting results in the use of 
Schwann cell and OEC in experimental spinal cord injury 
models, they have been amongst best candidates for the 
purpose of cell therapy (20). 

 The idea of a combination of Schwann cell and OEC 
for spinal cord injury transplantation is pertinent to their 
specifications. For example, OECs have a better ability 
for migration; and when co-cultured with astrocytes in 
vitro, do not disintegrate from them, as is the case for 
Schwann cells (5). Schwann cells, on the other hand, 
have been shown superior in promoting axonal growth 
and myelination (4). There are a few studies which used 
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OEC and Schwann cell in combination (8,21,22). It has 
been reported that OEC exerts beneficial effects on 
Schwann cells when transplanted in combination (23).  

We have previously shown that transplantation of 
Schwann cell through subarachnoid route improves 
motor performance in moderate spinal cord contusion in 
rats (24). Yet our human study has not yielded such 
improvement in transplanted cases (25). In order to 
consider very severe injuries of spinal cord compared to 
our previous study (24), we investigated subarachnoid 
transplantation of OEC and Schwann cell, alone or in 
combination, in contused spinal cord of rat; and 
evaluated behavioral recovery in long-term.  

  
Materials and Methods 
 
Study design 

A total number of sixty female inbred Wistar rats 
weighing 180-200 g were randomly divided into seven 
groups of Control (n=8), sham-operated (n=4), DMEM 
(n=8), OEC (n=10), Schwann (n=10), Mixed 
(OEC+Schwann, n=10) and fibroblast (n=10) based on 
injected suspension. All procedures were carried out 
according to the guidelines of ethics committee of 
Tehran University of Medical Sciences. Behavioral 
recovery of animals was assessed by BBB locomotor 
rating scale for six months (26). Animals were then 
sacrificed and prepared for histology and 
immunohistochemistry assessments. 

 
Spinal cord injury 

Aseptic surgical procedures were performed under 
anesthesia induced by a mixture of Ketamine (100 
mg/kg, ip) and Xylazine (10 mg/kg, ip). Following 
anesthesia, assessed by corneal reflex, an incision was 
made through skin spanning T4-T12 thoracic vertebra. 
Laminectomy was performed at the T9-T10 level under 
loupe magnification. A curved aneurysm clip with 
closing force of 1.23 N was used to compress the cord 
for three seconds, with lower and upper blades of the 
clip compressing ventral and dorsal surfaces of the cord. 
Flanking muscles and skin were then closed with 4-0 
chromic catgut and silk sutures respectively. Normal 
saline solution was injected after the surgery (5 ml, ip) 
and animals were transferred to recovery cages. Aspirin 
was dissolved in drinking water (100 mg/L) and 
supplied for three days as an analgesic. Special care 
included twice-a-day bladder expression and 
subcutaneous injection of Cefazolin (150 mg/kg) and 
Gentamicin (5 mg/kg) for up to two months in cases 
where animals were still incapable of urination or when 

urinary tract infection was observed.  
 

Cell preparation 
OEC and Schwann cell cultures were prepared from 

the olfactory bulb and sciatic nerve of neonatal rats 
inbred with recipient animals, respectively. Schwann 
cells were purified by a protocol described previously 
with some modifications (24,27). Briefly, sciatic nerves 
were extracted from 3- to 5-day-old rats; the epineurium 
was removed, and the nerve was split into several 
explants where subsequently placed on poly-L-lysine 
coated plates filled with culture media (DMEM+10% 
FCS). In order to reduce fibroblast contamination, 
explants were subcultured 3 to 4 times during four 
weeks. The cold jet technique was engaged to increase 
the purity of the Schwann cells. In this way, our cultures 
had a purity of about 95% determined by labeling with 
the anti-S100 antibody (28). Since fibroblast 
contamination always exists, we added a seventh group 
to evaluate the effect of pure fibroblast transplantation. 
Purification of OEC was according to the method of 
Nash et al., (29). Briefly olfactory bulbs from neonates 
were extracted, and the nerve fiber layer was dissected 
away and trypsinized. Cell suspension incubated for 18 
hours, and then the supernatant was transferred to a 
second plate which incubated for 36 hours. The 
remaining supernatant was transferred into poly-L-lysine 
coated plates and maintained until cells reached a 
confluency of 70-80%. 

 
Cell transplantation 

One week after spinal cord injury, injury site was re-
exposed for cell transplantation. Scar tissue was 
detached, and care was taken not to damage the exposed 
dura mater. The suspension for injection of either OEC 
or Schwann cells contained 5×104 cells of each in 5 μL 
of DMEM, and for the mixed suspension, a half 
concentration of each was prepared. Fibroblasts, with a 
similar concentration, were also prepared. Cell 
suspensions were injected into the subarachnoid space 
within 10 seconds using a Hamilton syringe with a fine 
30-gauge needle bent in the middle to minimize 
unwanted tissue damage. The needle tip was inserted 
into the dura mater 3-4 mm caudal from the injury 
epicenter in order to compensate its bent portion 
distance. After injection, the needle was kept still for 10 
seconds to minimize leakage of the suspension and then 
carefully withdrawn. 

 
Behavioral assessment 

Assessment of hindlimb function using Basso, 
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Beattie, Bresnahan (BBB) locomotor rating scale was 
performed every week for nine weeks and afterward, 
twice or once a month until 160 days post-injury, by two 
examiners blinded to the animal treatment (26,27). For 
this purpose, animals were placed in a round plastic 
container with a diameter and wall of 85 and 30 
centimeters, respectively.  

 
Immunohistochemistry  

At the end of the study, all surviving animals were 
transcardially perfused with 4% paraformaldehyde. 
Two-centimeter segments of spinal cord containing the 
center of the lesion in the middle were then collected, 
embedded in paraffin and sectioned (3 µm). After 
rehydration, the sections underwent antigen retrieval: 
slides were placed in a humidified chamber and rinsed 
with a solution of hydrogen peroxide with methanol 
(1:9) for 20 minutes. Following washing with distilled 
water, slides were incubated in Tris solution (pH=6) at 
120° C for 15 minutes. Blocking was performed by 
normal donkey serum (1:10) for 30 minutes. Anti-P75 
(rabbit polyclonal, 1:500; Sigma) and anti-S100 (S2644; 
rabbit polyclonal, 1:500; Sigma) antibodies were used 
for 1 hour at room temperature. Sections were then 
washed in Tris/Tween 20 solution for 10 minutes. Then 
HRP-conjugated secondary antibody was used to 
incubate the sections for 30 minutes at room 
temperature. After another wash with Tris/Tween 20, 
diaminobenzidine tetrahydrochloride (DAB) was 
administered as the chromogen for up to 10 minutes. 

Finally, all specimens were counterstained with 
Hematoxylin. Slides were then dehydrated, mounted, 
and observed under light microscope. In a separate 
staining, every four sections were stained with 
Hematoxylin and Eosin (H and E) and observed by a 
pathologist for gliosis and inflammation.  

 
Statistical analysis 

Statistical comparisons of BBB scores between 
experimental groups were performed using two-way 
analysis of variances (ANOVA). A P.value less than 
0.05 was considered significant in this study.  

 
Results 

 
Eight animals died during the study, and their 

records were not included in the analysis of data.  Prior 
to the injury, all animals were scored 21 according to the 
BBB scale. One day after injury BBB was evaluated, 
and seven animals which scored 1 or more in the scale 
were excluded from the study to assure that all of the 
animals sustain an intensive injury. Other animals, 
fulfilling injury criteria, were assigned into experimental 
groups. Assessment of BBB score started at one week 
post-injury and carried out for 21 weeks, revealed no 
significant difference between the treatment and control 
groups during this time (Figure 1). 

 

 

 
Figure 1. Mean of BBB scores (±SEM) of the all experimental groups. Animals were assessed one week prior to the injury, and all scored 21, 

which is considered normal locomotion. Except the higher score of fibroblast group at the third week (*P<0.05), there is no significant difference 

between the experimental groups during the study. 

 
 
The only exception was the fibroblast group, which 

showed a slight difference at the third week compared to 
control, DMEM, OEC, and Schwann cell/OEC groups, 

but not Schwann cell group. However, it’s BBB score 
declined at the fourth week and in following evaluations 
had no difference with any of the groups. Sham-operated 
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animals showed no functional impairment one week 
after injury and thereafter. When analyzed for the time 
factor in each single group, BBB score showed literally 
no improvement even 21 weeks after the injury. 

In H and E stained sections, fibrosis and gliosis were 
evident at the injury site in all groups; macrophages 
were rarely detected in some sections (data not shown). 
Labeling of the spinal cord with antibodies against P75 
or S100 reveals positive staining in white matter areas of 
injury site in OEC, Schwann, and mixed groups, but not 
in the control and DMEM groups (Figure 2). 

 

 
Figure 2. Injury site of spinal cord showing a portion of the white 

matter. Immunochemistry against P75 and S100 was visualized by the 

enzymatic HRP-tagged secondary antibody. Arrows show cells which 

stained positively for either P75 (B and C) or S100 (D). A: Anti-P75 was 

used in an animal from the control group. No positive staining is evident. 

B: Anti-P75 positively stains a cell in an animal which received OEC. C 

and D: Positive staining of both anti-P75 (C) and anti-S100 (D) in an 

animal which received Schwann cell. Scale bar: 10 µm. 

 
Discussion 

 
In this study, we found that transplantation of 

Schwann cell and/or OEC through the subarachnoid 
space did not improve motor function in rats with severe 
spinal cord injury. The only improvement in motor 
performance was seen in the fibroblast group at the 
third-week post-injury, which followed by an 
unexpected decline. Further studies are needed to clearly 
address the role of exogenous fibroblasts transplanted 

into the injured cord. Although motor recovery is the 
ideal goal of most transplantation studies, sensory 
improvement is also important which was not assessed 
in this study. 

In several studies of Schwann cell or OEC 
transplantation, behavioral recovery is reported in 
treatment groups (8,12,31-34). On the other hand, it has 
been reported that transplanted Schwann cells fail to 
migrate and myelinate areas of demyelinated axons in 
CNS (16-19,35). Similarly, failure of OEC for 
improvement of hindlimb function and axon 
regeneration (29,36-39), and even unwanted 
hyperalgesic effects have been reported (40). A recent 
human study has reported improvement in three patients, 
which suggests that autologous OEC transplantation can 
be beneficial (41). In most transplantation studies which 
report improvement in motor function, the weight drop 
model of spinal cord injury were used, whereas we used 
severe clip compression which could be considered 
complete contusion (42). We have previously shown 
beneficial results in transplantation of Schwann cell in 
moderate spinal cord contusion by clip compression in 
rats (24).  

The most important difference between our 
previous study and the current is the exact contusion 
model of the spinal cord. Here, the cord was 
compressed with a curved aneurysm clip, with the 
blades totally spanning and pressing dorsal and ventral 
surfaces, while in our previous study the clip was 
straight, and the blades compressed lateral surfaces. 
Hence, in our previous study, there was a possibility 
that the most ventral parts of the spinal cord remained 
intact; a possibility that was controlled in the current 
study. Another point of dissimilarity is the 0.07-N 
higher closing force than the previously-used straight 
clip. These two factors, position and the closing force 
of the clip, seems to be responsible for the greater 
injury seen in this study. Indeed, in the current study, 
the BBB scores of the control group are less than half 
of those of our previous study. There are factors that 
potentially affect the outcome of transplantation which 
vary from cell preparation and engraftment to routes of 
transplantation. The source of OECs was the olfactory 
bulb in this study, which is suggested not to be 
different from those of olfactory mucosa (43). Survival 
of transplanted cells is another determining factor. For 
example in the case of Schwann cell, it has been 
reported that most cell death occurs in the first 24 
hours; but even seven days after transplantation, 
necrosis and apoptosis is observed (44). It has been 
documented that density of cell suspension is an 
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important factor in the outcome of transplantation in 
that high concentration of cells- 50,000 to 100,000 /µl- 
yields better results (45). Thus, a cell population of 
50,000 in 5 µL in our study is relatively a sparse 
transplantation; however, it was effective in our 
previous study. Bladder expression and its timing 
before behavioral assessment have been implicated as a 
potential source of varied results (38). In neither the 
previous nor the current study, we performed bladder 
expression prior to BBB scoring.  

Part of the recovery from spinal cord injuries is 
because of the plasticity in both spinal cord and higher 
motor centers (46). It has been suggested that a greater 
injury leaves less spared tissue. When less than 15 
percent of the fibers are left, plasticity cannot take place 
in higher centers rostral to the site of injury (47). 
Compared to our current intensive injury, the milder 
injury in our previous study would, therefore, leave 
more spared tissue, raising the possibility for greater 
plasticity with the resultant tangible recovery.  

Immunohistochemical labeling against P75 and 
S100 reveals positive labeling in animals received 
Schwann cell, OEC or both. Although Schwann cell 
and OEC express S100 and P75, these markers are not 
specific for them and thus positively labeled cells 
cannot be exclusively attributed to transplanted 
Schwann cells and/or OECs. It has been shown that 
P75 expression increases in oligodendrocytes 
following spinal cord injury (48); and on the other 
hand, gliosis is the well-known proliferation of 
astrocytes which express S100 (49). Nonetheless, as 
shown in figure 1, sparse positive staining of P75 and 
S100 in the white matter of injury center in cell-treated 
groups, suggests integration of transplanted cells into 
the injury site. Nevertheless, even this sparse labeling 
is absent in control group. Current methods do not 
specifically purify OECs from its mixture with 
Schwann cells (8,22,50,51). This is especially 
important when OECs are extracted from lamina 
propria or olfactory nerve layer, which may raise 
Schwann contamination (51,52). We purified OEC 
from the olfactory bulb to minimize Schwann 
contamination. 

The timing of cell transplantation is also an 
important issue and acute transplantation usually gives 
better results (53,54). In the present study, 
transplantation was sub-acute and was done one week 
after injury. The first few hours following injury are 
extremely critical and after this time the spinal cord 
undergoes secondary injury cascades (55) and is difficult 
to repair by exogenous cell transplantation. Co-

transplantation studies in acute phase have shown 
promising results (34,56). 

This study suggests that after severe compression of 
the spinal cord, subarachnoid transplantation of 
Schwann cell and/or OEC does not improve motor 
performance. In other words, when the injury is severe, 
transplanted cells fail to exert functional motor 
recovery. However, it should not be concluded that 
OEC or Schwann cell are incapable of supporting 
regeneration and recovery under other models of spinal 
cord injury and transplantation, or higher concentration 
of cells. The injured spinal cord is one of the most 
hostile milieus for transplanted cells to survive. 
Regarding the low density of cells in injection bolus, 
higher densities should be applied especially because 
of the potential dispersion of cells in subarachnoid 
space. Due to the paucity of cell therapy studies 
through this route of transplantation, a definite 
conclusion cannot be made based on studies to date 
and further research is suggested in this field. 
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