The Potential of Circulating Tumor Cells in Personalized Management of Breast Cancer: A Systematic Review

Fatemeh Khatami¹, Hamid Reza Aghayan¹, Maryam Sanaei¹, Ramin Heshmat¹, Seyed Mohammad Tavangar², and Bagher Larijani³

¹ Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran

² Department of Pathology, Dr. Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran

³ Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran

Received: 25 Oct. 2016; Revised: 08 Dec. 2016, Accepted: 12 Jan. 2017

Abstract- Circulating tumor cells (CTCs) recognition and characterization in the peripheral blood of patients with breast cancer have proven practical and predictive value in different studies. However, the clinical significance of CTCs enumeration and molecular characterization in thepersonalization of breast cancer diagnosis and treatment remains under the debate. A literature search in PubMed, Web of Science and Scopus was performed from October 1990 to June 2016 for studies which evaluating CTCs and its association with clinical and pathological characteristics and medical outcome in the field of breast cancer personalization for both diagnosis and treatment categories. The treatment outcomes were progression-free survival (PFS) and overall survival (OS) or relapse in different patients. Sixty-nine studies met the inclusion criteria. The sample size varies from 1 to 2026. Median follow-up was 15 months (range 3-27). Different molecular techniques have been applied toresearch, but they mostly are based on CTCs enrichment and then detection by using FDA-approved Cell SearchTM. By far the most studies define CTCs as cytokeratins (CK) positive and CD45 negative cells. Despite the differences in methodology, twenty-eight studies for breast cancer diagnosis and prognosis were mainly focused on CTCs isolation and enumeration.Fortythreeresearches were about CTCs count and exact molecular characterization. In the way of precision treatment, CTCs detection before starting the first-line of therapy or during therapy in breast cancer patients is extremely valuable, but in the way of precision medicine it should be supported with some molecular characteristics of CTCs like CTCs phenotypic changes, gene expression analysis of CTCs and molecular characteristics of CTCs.

© 2017 Tehran University of Medical Sciences. All rights reserved. *Acta Med Iran* 2017;55(3):175-193.

Keywords: Circulating tumor cells; Breast cancer; Personalized medicine

Introduction

Breast cancer is the most common type of cancer amongst women in both developed and developing countries (1). According to American Cancer Society, the new breast cancer cases among women in 2012 was 1,676,600. The number of breast cancer deaths in women in 2012 was 521,900 all over the world (2). Most women undergo surgery for breast cancer and also receive other treatment such as hormone therapy, chemotherapy or radiation before or after surgery (lumpectomy, mastectomy, sentinel node biopsy, auxiliary lymph node dissection or removing both breasts). One of the problematic issues about breast cancer is drug resistance and tumor relapse which occurred in an unpredictable level in different patients that means not all patients respond equally to cancer therapeutic compounds. At the molecular level, how a

Corresponding Author: S. M. Tavangar* and B. Larijani**

^{*} Department of Pathology, Dr. Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran

Tel: +98 21 84902187, Fax: +98 21 88633078 E-mail address: Tavangar@ams.ac.ir

^{**} Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran

Tel: +98 21 66419661, Fax: +98 21 66953832, E-mail address: larijanib@tums.ac.ir

Circulating tumor cells

person responds to a cancer therapy is running in their gene expression pattern, genetic changes and their position in the cancer genome (3-5). The reference book from the WHO clusters breast cancer into 17 different types according to their microscopic appearance (6) and The genomic and transcriptomic architecture of 2,000 breast tumors discloses novel subgroups (7).

Thanks to the use of biotechnologies, impressive steps toward understanding the biology of breast cancer have been accomplished over last decade. In order to discover the genomic characteristics of breast cancer, new generation of biomarkers has become available with the discovery of the genetic alterations that are responsible for the initiation and progression of human breast cancers (8-10). Because of breast cancer intra-tumor heterogeneity (11) for real-time monitoring of the treatment, there is an essential need to repeat tumor biopsies from different anatomical areas and at different time-points. However, common tissue biopsies of a small tumor region may not provide an exact characterization of the genetic, epigenetic and/or phenotypic alterations found in the tumor as a whole (12,13). Additionally, it is quite challenging since it is costly, painful, hard to repeat and potentially risky for the patient.

For cancer research, liquid biopsies, which are adiagnostic concept, open a new perspective for real time tracking of cancer. Liquid biopsy is defined as circulating tumor cells (CTCs) and fragments of tumor DNA (ctDNA) that are released into the blood from the primary tumor and from metastatic sites (14). As we know for tumor metastasis the spread of a primary tumor to the blood stream through CTCs is a critical step (15). Circulating tumor cells (CTCs) are cancerous cells originating from a primary or metastatic tumor and shed into the peripheral blood (16). In breast cancer (BC), CTCs are detectable in patients with both early stages and late stages of disease (17-19). It has been shown that the CTCs detection may help to predict the clinical outcome in patients with different types of cancers, especially the enumeration of CTCs before starting systemic treatment in both metastatic and non-metastatic breast cancer patients (20). Furthermore, CTC count at different time points during systemic treatment could be a reliable marker of treatment response and have to decide on therapies based on molecular characteristics of CTCs (21-24). Because CTCs are found in circulation as a collectible fraction that is representative of the tumor, they may provide an ideal model to study the biology of the tumor at various intervals before and during treatment (23,24).

Take everything into consideration; precision breast

cancer treatment can be possible by using CTCs enumeration or characterization (25). Interestingly, several authors have shown that monitoring CTC levels facilitate prediction of treatment efficacy (26,27). In this article, we provide a first-time systematic review about research focusing on using both CTCs enumeration and molecular characterization and personalization of therapeutic and diagnostic procedures of breast cancer.

Materials and Methods

An independent systematic review of the literature across PubMed, web of Science and Scopus was conducted inJuly 2016. The search strategy included keywordssuch as "CTCs" or "Circulating Tumor Cells" or "liquid biopsy" and "breast cancer" and "personalized medicine" or "precision therapy" or "P4 medicine" or "stratified medicine" through their title, abstract and text from October 1990 to June 2016. Only studies published in peer-reviewed journals were included, data from letters and conference abstracts or report were not included. The study selection process is shown in Figure 1and search strategies, and results are provided in additional File1. Two reviewers evaluated all the candidate titles and abstracts categorized by the search strategy. and all potentially relevant publications were retrieved in full. They independently evaluated the selected articles for study eligibility. After apreliminary review of articles for study inclusion, aninter-reviewer agreement was assessed with the Cohen's kappa (κ) coefficient, and disagreement was resolved by discussion (16).

Figure 1. PRISMA flow diagram presenting the results of the literature search and study selection process

Data extraction

For eligible studies specific data elements included the following: author, year of publication, journal citation,

country, inclusion and exclusion criteria, study design and methodology for CTCs isolation and characterization (including but not limited to the cell surface markers, and definition of positive thresholds distribution of pathological factors including patients' age, tumor histology, tumor grade, type of breast cancer, tumor stage, and residual disease), details related to the therapeutic strategy (type of treatment, chemotherapy agents); duration and completeness of follow-up, analytical strategy between CTCs and outcome (s) of interest.

Assessment of bias in included studies

The methodological quality of the included studies was assessed in accordance with the risk bias guidelines in the Cochrane reviewers' Handbook 5.1.0. The risk of bias of the studies was assessed according to the following criteria: (1) the design of study; (2) whether or not patients included in analyses were representative of the larger population of breast cancer patients in a similar clinical setting (external validity); and (3) whether or not bias within the study design and analysis was appropriately considered (i.e. internal validity).

Results

Characteristics of included studies: Sixty-nine studies were included in the final analysis. There was a high grade of concordance between reviewers (κ =0.9) in selecting the studies to be included in this systematic review. Most studies were case series; other study designs included: case-control and cohort studies. On studies was case presentation (28) and one another was a multicompartment model which imitates the dynamics of tumor cells in the mammary duct, in both bones and circulatory system (29). Study size ranged from 1(case presentation) to 2026 patients. The most frequent of the patients had metastatic breast cancer (MBC). The timing for thecollection of CTCs varied widely among studies.

Thirty-two studies just focused on using Cell Search system and Cell Spotter Analyzer for CTCs enrichment, isolation, and enumeration (Table 1).

Conclusion	Type of treatment	Personalize d target molecules	Methods	Evaluation targets	Breast cancer	Patients number	Type of study	Year	Name of study	First author
Serum marker testing at baseline and through the first weeks of retarment can be satisfactorily substituted by CTC count	Chemotherapy.Hor monetherapy. Anti HER2 targeted therapy .Bevacizumab Other targeted therapy	Carcino embryonic antigen (CEA) plus (CA15-3) concentrations	CellSearch method	CTCs enumeration	MBC	911	Case series	2014	Clinical validity of circulating tumour cells in patients with metasattic breast canser: a pooled analysis of individual patient data	Bidard FC(33)
CTC detection is an independent, strong prognostic factor for OS in nomreastatic breast cancers during neoadjuvant chemotherapy	Neoadjuvant chemotherapy	leukocytes (CD45- allophycocyan) and epituelia cells (cytokeratin 8, 18, 19- phycoerythrin)	CellSearch system +CellSpotter Analyzer	CTC ₈ detection and enumeration	Non metastaticBC	115	Case series	2010	Single circulating turnor cell detection and overall survival in nonmetastatic breast cancer	Bidard, FC.(18, 37)
FLT-PET and CTC analyses can be considered to potentially predict early response when used in combination; correlations with outcome are required going forwards going	Docetaxel	CTCs markers	Metabolic imaging with dynamic FLT- PET scan	CTCs enumeration	MBC	S	Case series	2012	Monitoring early response to taxane therapy in advanced breast cancer with circulating tumor cells and F-18 3 - deoxy-3 - fluorothymidine PET: a pilot study	Contractor, K.(37)
Circulating tumor cells count in advance of treatment is an independent forecaster for PFS and OS in patients with metastatic breast cancer.	Hormone therapy, Immunotherapy,or both therapy alone or combined with other therapy	(CD45- allophycocyan) and epithelial cells (cytokeratin 8,18,19- phycoerythrin	CellSearch and CellSpottersystems.fl uorescence-based microscopy system	CTCs enumeration	MBC	177/345	Case/ control	2004	Circulating Tumor Cells, Disease Progression, and Survival in Metastatic Breas Cancer	Cristofanilli , Massimo(119)
CTCs detection berget the first-line therapy in patients with MBC is extremely prognostic of PPS and OS (design of tailored treatments)	Hormone alone Hormone + trastuzumab alone Chemo + trastuzumab + Chemo+ hormone Chemo + hormone + trastuzumab	Cytokeratin 8,18,19 plus CD45 negative cells	The Cell Spotter Analyzer17,19 (Veridex LLC, Warren, NJ)	CTCs detection and Enumeration	MBC	177	Clinical Trial (case series)	2005	Circulating Tumor Cells: A Novel Prognostic Factor for Newly Dlagnosed Metastutic Breast Cancer	Cristofanilli, Massimo(20)
CTCs are a strong independent predictor of survival among survival among survival anovo or newly recurrent MBC	Chemotherapy +Anthracyclines , Taxanes, Anthracyclines/ Taxanes, Hormone therapy)	Hormone receptor (HER- 2/neu) status	CellSearch System	CTCs enumeration	MBC	185	Case series	2008	Circulating tumor cells in metastatic breast cancer: from prognostic stratification of modification of the staging system?	Dawood, S.(89)

		С	ontinuance of T	Table 1.						
Presence of extensive bone metastases detected by FDG- PET/CT is associated with increased CTC numbers in MBC	Adjavant hormonal therapy Chemotherapy Hormonal therapy HER2 target therapy	lacking CD45 and expressing cytokeratin	FDG-PET/CT, CellSpotter Analyzer (Immunicon Corporation, Huntingdon Valley, PA)	CTCs enumeration	MBC	195	Case series	2010	Circulating tumor cells and bone metassases as detected by FDG-PET/CT in putients with metastatic breast cancer	De Giorgi, U.(30)
Detection of five or more CTCs during therapeutic prognosis in MBC beyond metabolic response. FDG- PET/CT deserves a role in patients who have fewer than five CTCs at midtherapy.	Systemic therapy	CTCs : nucleated cells that lacked CD45 and expressed cytokeratin	The CellSearch System (Veridex), CellSpotter analyzer (Immunicon), 118Fffluorodeoxyglue ose (FDG) positrom emission tomography (PET)/computed tomography (CT)	Comparision the prognostic value of CTC and FDG- PET/CT	MBC	115	Case series	2009	Circulating tumor cells (CTC) 18F fluorodeoxyglucose positron emission torongraphy, and computed tomography (PET/CT) for treatment monitoring in patients with metastatic breast cancer (MBC)	De Giorgi, U.(38)
Presence of CTC in breast cancer patients before undergoing surgery with curative intent is associated with an increased fask for breast cancer- related death.	Adjuvant systemic treatment (hormonal therapy or chemotherapy)	epithelial cell adhesion molecules (EpCAM)	The CellSearch system (Veridex, Raritan, NJ, USA)	CTCs enumeration	Breast Cancer	602	case series	2012	Ciculating tumor cells, disease recurrence and survival in newly diagnosed breast cancer	Franken, Bas(90)
Neural network analysis accurately predicted survival MBC patients with difficents of CTCs in all molecular molecular subtypes. Tab HR for all subtypes had a positive linear relationship relationship	Chemotherapy Hormonal therapy Anti-HER2 drug	ER; PR; HER2	artificial neural network (ANN)	CTCs enumeration	MBC	311	Cases series	2011	Artificial neural network analysis of circulating tumor cells in metastatic breast cancer patients	Giordano, A.(45)
Prognostic information provided by CTC count may be useful in patient stratifications and therapeutic selection (particularly in the group with positive CTCs)	Trastuzumab Lapatinib	epidermal growth factor receptor-2	CTC assessment performed with CellSearch	CTCs enumeration	MBC	235	Case series	2010	Circulating tumor cells as prognostic and predictive markers in metastatic break cancer patients receiving first-line therapy	Giuliano, M(43)
Patients with greater than 5 CTCs per 7.3 mL blood had significantly decreased tresponses by their immute cells when compared with those patients who had 5 CTCs or less	Radiation Chemotherapy	epithelial cell adhesion molecule (EpCAM)- positive, cytokeratin (CK)-positive, DAPI- positive, and CD45- negative	The CellSearch Circulating Epithelial Cell Kit (Veridex, South Raritan, NJ), Radioimmunoassay	CTC enumeration and NK cell function measurement	MBC	45	Case series	2013	Circulating tumor cells (CTCs) from meastatic breast cancer patients linked to decreased immune function and response to treatment	Green, T. L.(31)
CTC presence was not associated with primany tumor size, high grade, or lymph node positivity, one or more CTCs, present after NACT predicted after NACT predicted relapse and survival in nonmetastatic TNBC putients.	Neoadjuvant chemotherapy (NACT)	cells positive for CK and negative for CD45,	Cell Search System (Janssen),A serniautomated fluore scence-based microscope system	CTCs enumeration	TNBC(triple negative breast cancer)	57	Case series	2015	Circulating Tumor Cells after Neoadjuvant Therapy in Stage I-III Thiple- negative Breast Cancer	Hall, C.(39)
CTCs after primary chernotherapy identified IBC patients at high risk for relapse	Primary systemic chemotherapy	lacking CD45 but expressing cytokeratins (CK) 8, 18, or 19	The CellSearch System (Janssen)	CTCs enumeration	stage III Inflammatory breast cancer (IBC)	8	case series	2015	Circulating Tumor Cells and Recurrence After Primary Systemic Therapy in Stage III Inflammatory Breast Cancer	Hall, C. S.(41)
Changing CTC levels during chemotherapy are useful to monitor therapy efficacy	Chemotherapy in combination with targeted therapy.	serum CA 15-3 measurement	Censave unes (vernex, Warren, NJ, USA), sequential chemiluminescent sandwich immunoassay on the ADVIA Centaur System Gienens Healtbare Diagnostics Eschborn, Gamoan/	CTCs and CA 15-3 enumeration	Advanced MBC	58	Case series	2011	Changing levels of circulating tumor cells in monitoring chemotherapy response in putients with metastatic breast cancer	Hartkopf, A. D.(58)
Detection of elevated during therapy is an accurate indication of subsequent rapid disease progression and mortality for/MBC putients	Systemic therapy	nucleated cells lacking CD45 and expressing cytokeratin	GellSearch System (Veridex LLC, Ranitan, ND, CellSpotter Analyzer (Immunicon)	CTCs enumeration	MBC	177	Clinical Trial (case series)	2006	Circulating tumor cells at each follow-up time point during therapy of metasatic breast cancer patients predict progression- free and overall survival	Hayes, D. F.(120)
Two or more CTCs predict shorter progression-free and overall survival in TNBC patients	Neoadjuvant chemotherapy	epithelial-cell- adhesion molecule, lacking CD45 but expressing cytokeratins (CK)	CellSearch System (Janssen Diagnostics,LLC)	CTCs enumeration	stages I-III TNBC	113	case series	2014	Circulating tumor cells in non-metastatic triple-negative breast cancer	Karhade, M.(40)

Continuance of Table 1.

Continuance of Table 1.

Continuance of Table 1.										
A strong correlation between CTC results and radiographic disease progression in putients receiving chemotherapy or endocrine therapy for MBC.	Chemotherapy, Chemotherapy +biologic agent Endocrine therapy Endocrine therapy + biologic agent Biologic agent alone	Hormone receptor and HER2/neu results, cytokentin positive, DAPI positive, and CD45 negative	CellSearch technology (Veridex), RECIST	Enumeration of CTCs and Definition of Response by Radiographic Imaging	MBC	68+6	Case series	2009	Circulating Tumor Cells: A Useful Predictor Treutment Efficacy of Metastatic Breast Cancer	Liu, M. C.(121)
The presence of one or more circulating tumour cells predicted early recurrence and decreased overall aurival in survival in chemonative patients with non-metastatic breast cancer	Adjuvant chemotherapy	nucleated cells positive for cytokeratin and negative for CD45	CellSearch System (Veridex, Rarian, NJ), semiauomatedfluores cencebased micro scope system	CTCs enumeration	stage 1–3 breast cancer undergoing surgery	302(73-229)	Case-Control	2012	Circulating tumour cells in non-meastatic breast cancer: a prospective study	Lucci, Anthony(122)
PD-L1 is frequently expressed cells circulating cells circulating that biopsy in fund biopsy in fund biopsy in fund fundation fund amonitoring of cancer patients undergoing immune checkpoint blockade.	Anti-PDL1 antibody therapy	PD-L1(CD279), PD- L2 (B7-DC; CD273), EpCAM+DAPI+CK+ CD45	Western blot, Flow cytometry and Innunocytochemical analyses CellTracksAutoprep.a ndCellSearch CXC Kit (Janssen)	CTC enumeration (was used for these specific experiments.)	MBC	31(16/15)	Case-Control	2015	Frequent expression of PD-L1 on circulating breast cancer cells	Mazel, M.(65)
The present results indicate that the CellSauch system is superior to the AdmTest Beast Cancer in predicting clinical outcome in advanced breast cancer	Anti HER2 target therapy	HER2, MUC1, and GA733-2, EpCAM, DAPI staining	AdnaTest Breast Cancer and the CellSearch system	CTCs enumeration	MBC	254	Case series	2012	Prognostic impact of circulating tumor cells assessed with the CellStardb System TM and AdmTest Breast TM in metastatic breast cancer patients: the DETECT study	Müller V(42)
Because the change in the number of CTCs was highly correlated with results from imaging before and after herapy. CTCs can be considered a bromarker that may predict the effect of resument earlier than imaging modulities.	Chemotherapy (Chemo), Chemo + trastuzumab, Chemo + bernone , Hormone , Hormone , Hormone , Hormone + trastuzumab	CTCs: nucleated cells hecking CD45 and expressing cytokeratin	Cell Tracks Analyzer (Veridex LLC, Rarian, NJ), CellSearchTM System (Veridex, LLC, Raritan, NJ), CellSearchTM Epithelial Cell kit, semiautomated fluore scence microscopy system	CTCs enumeration	MBC	119	Case series	2010	Multi-center study evaluating circulating turnor cells as a surrogate for response to retannent and overall survyal in metastatic breast cancer	Nakamura, S.(123)
CTCs basal value is a predictive indicator of prognosis and changes in CTC levels during thenpy may indicate a clinical response. Tasting CTC levels during targeted treatment might substitute other measurement parameters for response evaluation.	With a maximum two lines of therapy.	CTCs:ovalmorpholog y,a DAPI positivity, positivity for cytokenatin and negative staining for CD45	CellSearch System (Verides) :CellTrackAutoPrepS ystem+CellSpotter Analyzer	CTCs enumeration	advanced breast cancer patients	80	Case series	2008	Variation of circulating tumor cell levels during treament of metastatic breast cancer: prognostic and therapeutic implications	Nole, F.(92)
Peripherally circulating tumor cells are influenced by systemic chemotherapy and that an increase (even after initial response initial response initial or more at the end or more at the end or more at the end or fuenapy of 10-fold or more at the end or fuenapy in the end or fuenapy and a surrogate marker for aggressiveness of the tumor cells	Adjuvant chemotherapies	ER expression	Fluoromicrographs of epithelial cells with green fluorescence, CellSearch system (Veridex, Warren, NJ)	Analysis of circulating epithelial tumor cells (CETCs)	nonmetastatic primary breast cancer patients	16	Case series	2008	Monitoring the response of circulating of cells to adjuvant chemotherapy in breast cancer allows detection of patients at risk of early relapse	Pachmann, K.(124)
The detection of EpCANCTCs was not clearly associated with any of breast concern in patterns with MBC before first-line treatment. Potentially clinically relevant differences were however observed at very high CTC counts. Furthermore, our data suggest a lower prognostic significance of CTC evaluation in HER2-positive patients with MBC.	Cytotoxie chemothenapy, Endocrine treatment funcluding trusturumab, lapatinib, pertuzumab and TDMI) , radiothenapy and bisphosphonates alone.	EpCAM, (ER/PR), HER2/neu status	FISH, IHC, CellSearch system (Veridex, LLC) using the IVD CellSearch CTC kit	CTCs enumeration	Luminal B-HER2- negative , Luminal B- HER2-positive , HER2- positive (non-luminal) Triple negative, Not	154	Case series	2014	Detection and prognostic significance of circulating tumour cells in putients with metastatic breast cancer according to Zimmunohistochemical subtypes	Peeters, D. J.(46)
Circulating tumor cells can be detected by the CellSarch system at low cutoff of leell in 27% of praients necesiving neoadjuvant chemotherapy. Circulating tumor cell detection the primary tumor response but is an independent prognostic factor for early relapse	Prenecadjuvant chemotherapy and/or postnecadjuvant chemotherapy	CD45-allophycocyan) and epithelial cells (cytokeratin 8,18,19- phycoerythrin	The standardized Cellsearch technique, Seminutomated fluorescence-based microscopy system	CTCs enumeration	MBC	118	Case series	2008	Circulating tumor cell detection predicts early metastatic relayea after neoadjuvani in large operable and locally advanced brathy advanced brathy advanced relation	Pierga, J. Y.(36)
This is the largest prospective series validating the prognostic value of CTC independently from series and and marker. Elevated CTCS, before C2 are an early predictive marker of poor PFS and OS, which could be used to monitor treatment benefit. CTC decrease under treatment seems stronger with targeted thempy.	Chemotherapy with/without argeted therapy (assues , anthracyclines , .5-fluorouracii) and vinorelbine	CTC count, CEA, CA 15-3, LDH and ALP	CTCs were counted with CellSearch®	CTCs enumeration and comparison with serum tumor markers (CA 15- 3. carcinoembyronic antigen and lactate dehydrogenase)	MBC	267	Case series	2012	High independent prognosic value of circulating tumor cells compared with serum tumor markets in a large prospective trial in first-ine chemotherapy for metastatic breast cancer	Pierga, JY.(35)

Continuance of Table 1.											
These results suggest the independent prognostic prognostic both before and after adjuvant chemothempty in a large prospective trial of patients with primary breast cancer.	Primary operation: Breast conserving "Mastectomy Radiotherapy: Performed.Not performed Systemic therapy: Chemotherapy.Chemother apy.Endocrine treatment "Trastuzumab	CTCs were defined as nucleated cells expressing cytokeratin and lacking CD45	Immuno-magnetic enrichment for cells expressing the epithelial- cell adhesion molecule CellSearch System (Verdex, Ranitan, NJ) CellSearch System	CTCs enumeration	early breast cancer	2026 / 1492	Cohort	2014	Circulating Tumor Cells Predict Survival in Early Average-to-High Risk Breast Cancer Patients	Rack, Brigitte(125)	
The specificity of CTC detection was found to be highest when the sum of CTC counts from the 2 at theshold of 8 CTCs/15 and CTC counts from the Cell-Search and CSV methods a pipears to provide new insights for assessment of therapeutic response and thus provides a new approach to personalized medicine in breast cancer patients.		EpCAM, 84-1 and CD45 and epithealial/ mesenchymal ratio	CellSearch system, enumeration of CTCs by 84-1 antibody. EasySep TM Human CD45 Depletion Kit (Stem Call Technologies), Nuclear EpCAM Staining	CTCs enumeration	MBC	58	Case series	2015	Circulating tumor cell enumeration of epithelial combination of epithelial cell-aufdexion molecule- and cell-surface vimentin- based methods for monitoring breast cancer therapeutic response	Satelli, A.(126)	
The differential prognostic and overall survival schowed between patients with and without elevated CTCs before and at the end of chemothempy, is of special interest in patients without of special interest in patient evidence of metastasis. Molecular and genetic characterization of CTCs, chemoresistance profiles should also be able to advise the clinician regarding the most efficacious chemoterapy regiments. In terms of tumor biology, it is clear that circulating tumor cells are present in early breast cancer, thus supporting the theory of early metastasis	Chemotherapy Neoadjuvaat treatment	N/A cytokentin 7, 8, 18 and 19	N/A Ficoli gradient and selective immunomagnetic cell separation, mmunocytochemical statining	CTCs enumeration CTCs enumeration	Breast cancer (metastatic and non metastatic) non-metastatic breast cancer patients	92(71) 26	Case series Case series	2009 2012	Detection of circulating tumor cells in the context of treatment Prognosic value in breast cancer Dynamics of circulating tumor cells in early breast cancer under neoadjuvant therapy	Serrano, M. 1.(127) Serrano, M. 1.(67)	
CTCBL, CTC1C, and CTCKM are predictive of outcome in MBC, Seruh CTC cammeration is useful in tailoring systemic treatment of MBC	Systemic reament	Cytokeratin (CK) 8, 18, and 19, and lacking CD45	CellSearch TM assay (Cell- Search TM Epithelial Cell Kit/CellSpotter TM Analyzer, Veridex LLC, Rarian, NJ, USA)	CTC status at baseline (CTCBL) and after one cycle of a new line of systemic therapy (CTCIC) and CTCKIN enumeration	MBC	393	Case series	2014	Serial enumeration of circulating tumor cells predicts treatment response and prognosis in metastatic breast cancer: a prospective study in 393 patients	Wallwiener, M.(93)	

They check CTCs number at thestarting point, through the first weeks of treatment and after treatment completion as a factor for progression-free survival (PFS), overall survival (OS) and relapse in different patients. CTCs are defined mostly in place of cytokeratin (CK) positive and CD45 negative cells. Detection of five or more CTCs per 7.5 mL blood during therapeutic monitoring can accurately predict prognosis in MBC (30) and significantly decreased responses by their immune cells in comparison with those patients who had 5 CTCs or less (20,31,32) so it is a strong prognostic factor for OS during neoadjuvant chemotherapy (NACT) in MBC patients (33-36). About positron emission tomography-computed tomography (PET) it can easily say that FDG-PET/CT and FLT-PET and CTC analyses could be considered to potentially predict early response when used in combination; correlations with OS and PFS (37,38). One or more CTCs present after neoadjuvant chemotherapy predicted relapse and survival in non-metastatic triple-negative breast cancer (TNBC) patients but CTCs presence was not connected to the primary tumor size, high grade or lymph node positivity (39,40) and also CTCs after primary chemotherapy recognized inflammatory breast cancer (IBC) patients who are at risk of relapse (41). The results indicate that the CellSearchTM system is superior to the DNA Test in the way of clinical outcome in advanced breast cancer prediction (42). Finally ,prognostic information provided by CTC count may be useful in patient stratifications and therapeutic selection (particularly in the group with positive CTCs) (43), but CTCs were powerfully predictive of survival in all MBC subtypes excluding Her2 positive patients who had been received targeted therapy (44,45). Some data propose a lower prognostic implication of CTC evaluation in Her2-positive patients with MBC (46).

Additional thirty-sevenresearches mostly consider cellular markers and gene expression profile of CTCs

and have more emphasize on personalized breast cancer diagnosis and treatment (Table 2). In twentyone of them the most common molecular marker was a proto-oncogene Neu (Her2) alone or collectively with other molecules such as epithelial cell adhesion molecule (EPCAM), progesterone receptor (PR, also known asNR3C3ornuclear receptorsubfamily 3, group C, member 3) and estrogen receptors (ERs) (47).

Conclusion	Type of treatment	Personalized target molecules	Methods	Evaluation	Type of breast cancer	Type of study	Patients number	Year	Name of study	First Author
Lapatinib is effective in decreasing HER2- positive CTCs in patients with MBC irrespectively of the HER2 satus of the primary tumor	Lapatinib	EGFR, HER2	Immunoflourescent microscopy	HER2 positive CTCs count	MBC	Clinical Trial (case series)	22	2015	Efficacy of Lapatinib in Thenay-Resistant HER2-Positive Circulating Tumor Cells in Metastatic Breast Cancer	Agelaki, S(54)
postre c i c sare the completion of adjuvant chemotherapy may provide clinically useful information concerning the efficacy of treatment	Adjuvant chemotherapy	HER2 mRNA	Nesled RT-PCR	HER2 mRNA- positive CTCs detection	BC (Stage I and II)	Case series	214	2007	NUCLAURING TELAS INKNA-positive cells in the peripheral blood of patients with stage I and II breast cancer after the administration of adjuvant chemotherapy: evaluation of their adjuvant	Apostolaki, S.(50)
scenarios una arei ure parien-specific survival probability by modifying the populations of circulating unnour cells and it could be extended to other	Bisphosphonates- therapy	EPCAM, CD47, CD44 and MET	Branching process model	CTCs gene expression	The earliest stage of BC	Case series	N/A	2015	Modelling Circulating Tumour Cells for Personalised Survival Prediction in Metastatic Breast Cancer	Ascolani, G.(29)
syounoving cross seems to be an important cod that who were initially ineligible for berequin but who would later quality for		BM7 , VUID9, KRT19,SCGB2A2, MUC1, EPCAM, BIRC5 and ERBB2	Cell Culture, Immunomagnetic Enrichment Antibodies, real-time reverse transcription- polymerasechain	Enumeration and characterization of CTCS	MBC	Case-Control	32 MBC / 42 negative controls	2012	Multimarker Analysis of Circulating Tumor Cells in Peripheral Blood of Metasukic Breast Cancer Patients: A Step Forward in Personalized Medicine	de Albuquerque, A.(128)
CTC characteristics are more closely linked to the dynamic modifications of the disease status	Chemotherapy, Endocrine therapy	50 cancer related genes	Next Generation Sequencing (NGS)	Molecular characterization of single CTCS	Stage III and IV BC	Case series	4	2016	Mutational analysis of single circulating tumor cells by next generation sequencing in metastatic breast cancer	De Luca, F.(55)
TGF-β and CXCL1 are associated with a poor prognosis, and higher detection of CTCs and propensity of these cells to seed lung metastases in patients with breast	Systemic therapy	CK3+ CTCs,Transforming growth factor-beatea (TGF-bea) and Chemokine (C-X-C Motif) Ligand-1 (CXCL1)	ELISA, ELISA, AdnaT estBreastCancer test (AdnaGen AG, Langenhagen, Germany; method B)	Enumeration and characterization of CTCs	non-treated stage III- IV MBC	Case series	8	2013	consuming severs of transforming growth factor-bettent (TGF- beta) and chemokine (CSAC motif) lignal- 1 (CSCI) as predictors of distant seeding of circulating tumor cells in patients with meastatic breast	Divella, R. (71)
ices van uumer u patients wih HER2 negative primary tumors. Therefore, it will be mandatory to correlate the assay-dependent HER2 satus of CTCs	HER2-targeted the rapies	HER2	CellSearch assay	Enumeration and characterization of CTCs	MBC	Cohort	254	2010	HER2 status of circulating tumor cells in 15patients with metastatic breast cancer: a prospective, multicenter trial	Fehm, T(99)
patients with initially negative or unknown HER2 status can have elevated semm HER2 levels and/or HER2- positive CTCs at the time of development of	HER2 targeted therapy and endocrine therapy	GA 733-2, MUCI or HER2	Slide-based assay,	Evaluation of HER2 status of c irculating tumor cells	MBC	Case series	77 (44/33)	2007	Determination of HER2 status using both serum HER2 levels and circulating unmor cells in patients with recurrent breast cancer whose primary unnor was HER2 negative or of unknown HER2 status	Fehm, T.(51)
adjuvan treatment can only be answered in clinical trials randomizing patients according to the expression profile based on CTCs or	HER2 targeted therapy and endocrine therapy	EpCAM, MUC1 and HER2 transcripts, Expression of the ER and PR	AdnaTestBreastCance r ^{rM} (AdnaGen AG, Germany), RT PCR,IHC	correlation between CTC's and disseminated tumor (DTC's) in the bone marrow (BM) evaluation and CTC's Molecular characterization	primary breast cancer	Case series	431	2009	Detection and characterization of circulating tumor cells in bload of primary by RT-PCR and comparison to status of bone marrow disseminated cells	Fehm, T.(52)

Table 2. Using of CTCs molecular characteristics in	personalized management of Breast Cancer
Tuble 2: Comg of CT Co molecular characteristics in	personalized management of Dreast Cuncer

Neoadjuvant chemotherapy (NACT) predicted worse outcome in nomenustatie TNBC paulents. HER2-augreet therapy + chemotherapy One or more CTCs present after NACT predicted relapse and survival in nometastatic TNBC CTCs were strongly predictive of survival in all MBC subsystes scene tHER2- paulents who had been treated with targeted therapy	positive for CK and negative for CD45 HER2	fluorescence in stu hybridization (FISH) , CellSearch System (Jansen Diagnostics, LLC) immunohistochemical (HC), fluorescent in stu hybridizztion , CellSearch	Enumeration and characterization of CTCs Enumeration and characterization of CTCs	suge I to III Triple-negative breast cancer (TNBC) MBC	cuse series Case series	57	2011 2012	Circulating Tumor Cells after Neoadjavant Thenpy Predict Outcome in Stage 110 III Breast Cancer Circulating tumor cells in immunobistochemical subtypes of metastatic breast cancer: hack of prediction in HER2-positive disease treated with uargeted then py	Hall C(39) Giordano, A (44)
New systemic therapy without limits to number of previous therapies The presence of CTCs expressing MRFs and ALDH is predictive of response to chemotherapy in MBC patients	MRPs, ALDHI, Era and HER2/neu	PCR	CTCs isolation and molecular profiling	MBC	Case series	42	2011	Circulating tumor cells (CTCs) in metastatic breast cancer (MBC): prognosis, drug resistance and phenotypic characterization	Gradilone, A.(129)
Anthracycline-based chemotherapy, NPLD Nongeychad liposomal doscrubicin (VPLD) who received conventional anthracyclines (doscrubicin or spithicin) had a spithicin) had a	multidrug resistance- related proteins 1 and 2 (MRP1, MRP2)	CELL.ectionDynabead s coated with a monoclonal Antibodies	CTCs isolation and molecular profiling	MBC	Case series	42	2011	How Circulating Turnor Cells Escape From Multidrag Resistance Transiting Molecular Mechanisms in Mechanisms in Mediatatic Breast Cancer Treatment	Gradilone, A.(130)
(Neo) adjuvant chemotherapy were detected in DCIS/LCIS or M0 BC irrespective of the irrespective of the respective of the respective of the IRR2 expression on CTCS might be useful in trials with anti-	HER2-positive CTCs	CellSearch, immunofluoresence	CTCs enumeration and HER2 expression	BC	Case/Control	6 BC cell line	2011	HER2-positive circulating tumor cells in breast cancer	Ignatiadis, M.(48)
First-line systemic therapy.Endorrine only.Chemotherapy HER2-directed (with chgruphhenga), 	CTCs : CK+/CD45- /DAPI+ cells fulfilling certain predefined criteria	Cenasear Diagnostics), visual examination of the galleries generated by the CellTracksAnalyzer, fl uorescent microscope (CellTracks Analyzer	Morphologic characterization of CTCs Enumeration and characterization of CTCs	All breast cancer subtypes	Cohort	52	2016	Prognostic impact of circulating tumor cell apoptosis and clusters in serial blood samples from patients with meastatic breast cancer in a prospective observational cohort	Jansson, Sara(131)
Randomized adjuvant therapy and endocrine therapy In patients who are CTC-negative and progesterane receptor- positive, IL-4 Th2 cytokines are cytokines are significantly modified	Interleukin-4,-5,-6,-8 and-13,Th2 cytokines	CellSearch System (Jansen Diagnostics, South Raritan, NJ, USA, CellTrack Analyzer II (Jansen Diagnostics)	Enumeration and characterization of CTCs	Breast Cancer	100 CTC _{S+} / 100 CTC _S -	200	2016	Determination of Interleukin-4,-5,-6-8 and-13 in Serum of Patients with Breast Cunter Before Treatment and its Correlation of Circulating Tumor Cells	Konig, A.(62)
Neondjuvant chemotherapy CTCs within each patient, It has the feasibility of unbiased quantitative and reproducible assessment of treatment targets on CTCs, opening a	Her-2-FTC signal intensities	CellSearch((R)) system.Hder2- fluorescein isothiceyanate (FTTC) fluorescence	CTC enumeration and Her-2 assessment	BC.	Case/Control	103 (M1)/88 (M0)	2013	Unbiased quantitative assessment of Her-2 cexpression of circulating tumor cells in patients with metastatic and non- metastatic and non- metastatic breast cancer	Ligthart, S. T. (49)
Neoudjuvant Trastazamab, Iapatinib-based asso-ance visu mana response, whereas disease progression was fellared to a recurrence in CTCs, which were both EGIRR and Her2 negative. Expression	EpCAM positive but CD45 negative, estrogen receptor (ER) and progesterone receptor (PR) and were strongly positive for Her2	CellSearch system, and FACTS analysis, IHC	Enumeration and characterization of CTCs	MBC	Case presentation	-	2010	Endication of EGFR. positive citrulating umor cells and objective tumor response with lapatiniti and capecitabine	Liu, Z(28).
Targeted therapy unununupressivity analysis can be easily integrated into the existing clinical workflow, moving the field closer to a true perphenal blood liquid	constitutive or inducible pSTAT3 expression and Ki-67	Routine cytologic techniques, Immunocytochemistry /immunohistochemistr y	CTC enumeration and Characterization (noneancer patients was spiked with breast cancer cell lines)	BC	Case/Control	52/42	2015	Young investigator challenge: Application of cytologic techniques to circulating tumor cell specimes. Detecting activation of the oncogenic transcription fador STAT3	Lowe, A. C.(94)

Continuance of Table 2.

Adjuvant chemotherapy Neo-adjuvant chemotherapy Neoadjuvant and/or adjuvant chemotherapy and tumor progenitor phenotypes CTC detection may be a promising entry marker of disease progression potentially enhancing the difficult therapeute decisions The tested cytokentias provided no substantial benefit hue adding CD09F to CK8/18/19 as a selection marker resulted in improved recovery of normal-like Combined saining of CK8/18/19 and CCD9F after CD146/EpCAM enrichment is likely to further improve	GallwarD, and the down an itege area family. A GMAGE A3) (EBCAM) and selection an aritige area family. A GMAGE A3) (EPCAM) and selection (CK81819) markets used in this method. While CD146 can detect EPCAM-negative CTCs, we here evaluated the value of various cytokeratins and CD49f to detect CK8 1819-negative CTCs.	Collagen adhesion matrix (CAM) assay, CAM upuake assay,PCR AdnaTestBreasCancer TM (AdnaGen AG, Germany), qPCR gene expression analysis qRT-PCR. Tissue microarrays (TMAs),e CellSearch Epithelial Cell kit (Veridex LLC),	Detection of invasive CTCs and Detection of CTCs , Molecular phenotyping of circulating Enumeration and characterization of CTCs CTCs enumention and characterization	Stage I-III breast cancer Early breast cancer patients breast cancer	Case «Control Case series Cell line	54/53 54 34	2010 2014 2012	Isolation of circulating epithelial and tumor progenitor cells with an invasive phenotype from breast cancer patients Detection of circulating tumor cells during follow-up of patients with early breast cancer. Clinical utility for monitoring of therapy efficacy CD49f-based selection of circulating tumor cells (CTCS) improves detection across breast cancer subtypes.	La, I, (63) Mikulova, V, (66) Mostert B(\$4))
Endocine treatment, HER-2/neu anthody trastuzumab (Hereyfin) alone or incer-spinotae examined for the proliferative status of their circulating tumor cells showed coexpression of KI- of. Circulating tumor cells seemto be the status of the status of the status of the status of the status of the status of the status of the status of the status of the status of the status of the status of the status of the status of the status of the status of the status of the status of the s	CA15.3, epithelia cell adhesion molecule (EpCAM), Ki-67 antigen, HER- 2/neu expression, estrogen receptor, progesterone unreceptor,	guaran system (Greiner Bo-One GenbH, Frickenhausen, Germany) standard ELISA (IMk CA15.3 second generation by Abbott	Enumeration and characterization of CTCs	BC	Case series	60	2005	Circulating tumor cells in breast cancer. Correlation to bone marrow micrometastases, beterogeneous beterogeneous response to systemic therapy and low proliferative activity	Muller, V.(59)
Chemotherapy Patients with HER2 overexpression in CTCs had poorer progression free survival compared with those without CTCs or with HER2- CTCs free	EpCAM+, CK+, DAPI+, CD45-, and HER2/neu+.	immunomagnetic separation using ferrofluid nanoparticles binding anti-epithelial cell adhesion molecules (EpCAM) and	Enumeration and characterization of CTCs	Advanced BC	Case series	76	2010	Changes of HER2 Status in Crevalating Tumor Cells Compared With the Primary Tumor During Treatment for Advanced Breast Cancer	Munzone, E.(53)
Surgical procedure, systemic therapy without crugsted therapy (namely, trastrzanab) monitoring since heterogeneiry of the biomarker distribution in CTCs and the lack of correlation with the primary tumor biomarker status were found. Further	Estrogen receptor, Progesterone receptor , Epidermal growth factor receptor (EGFR), HER2 and TOP2A	fluorescence in situ hybridization FISH, Immunomagnetic techniques using magnetic beads, immunocytochemical methods	Enumeration and characterization of CTCs	nonmetastatic breast cancer	Case series	86	2012	Biomarkers chancterization of circulating tumour cells in breast cancer patients	Nadal, R.(47)
ranson inuuanonai sranson inuuanonai sranson setti ang individual mBC putients demonstrates the feasibility of a non-invasive approach based on the	Heterogeneity of PIK3CA mutational status within single CTCs	Combination of the CellSearch and DEFArray Iechnologies Whole Genome Amplification (WGA) and sequencing analysis	CTCs enumeration and nolecular characterization(Muta tional status of PIK3CA)	MBC	Case series	39	2015	Heterogeneity of PHS3CA mutaional status at the single cell level in circulating tumor cells from metastatic breast cancer patients	Pestrin, M.(113)
Target therapy amplification) and (iii) genome-wide arny CGH (aCGH). Microheterogeneity analysis among individual CTCs uncovered pre- existing cells resistant	HER2 amplifications, PIK3CA mutations and genomic copy number changes	DEPArrayTM technology (Silicon BiosystemsSpA), Whole genome amplification (WGA) using the Ampli1TM WGA kit	comprehensive molecular characterization of CTCs	CTCs posistive breast cancer	Case series	8	2014	Molecular profiling of single circulating tumor cells with diagnostic intention	Polzer, B.(114)
Chemotherapy, Connotherapy of largeted therapy such as Trastruzumah, Tranoxiten therapy discriminates good and poor oucorone to first-line aromatase inhibitors in MBC partients. Although results need to be validated, this study underscores the	8 genes: TWISTI , KRT81 ,PTRF JEJEF1A2, PTPRK EGFR,CXCL14 ,ERBB3	The CellTracks Analyzer (Veridex LCC), quantitative reverse transcriptase polymerase chain reaction(q-PCR)	CTC gene expression profile identification (mRNA isolation from CTCs, qRT-PCR and quantification ofgene transcripts) and Enumeration	MBC	Case series	78	2016	An 8-gene mRNA expression profile in circularing tumor cells prodicts response to aromatase inhibitors in metastatic breast cancer patients	Reijm, E. A.(56)
Lopointhe +Cenerictione, Sonafentb, Irinotean +centrinita and polighumex+ capecitabine baseline CK19+mRNA CTCs was associated with poor prognosis, a derenase in MGB1+mRNA CTCs may help predict response to therapy of	CK19, MGB1, and b2-microglobulin (B2M) mRNA levels	Reverse transcription (quantiat ive PCR by a BioRadiCyc ler IQ	Enumeration and molecular characterization of CTCs	MBC	Case series	146	2011	 vytoketautur 17 autu Mammaglobih Gene Expression in Circulating Tumor Cells from Metasuite Breast Cuncer Patients Emrolled in North Central Cancer Treatment Group Trials, North 172261224127 	Reinholz, M. M.(132)

Continuance of Table 2.

Acta Medica Iranica, Vol. 55, No. 3 (2017) 183

Continuance of Table 2.

HER2 expression on CTC. CK-19 gene expression Apoptotic markers: Kio7 and M30 status of CTCs HER2, MUC1 and GA733-2 transcript Epirabic in/cyclophosphamide prior to randomization to docetaxel alone, docetaxel in combination with capecitabine, docetaxel followed by capecitabine and additional trastrzamb treatment Chemotherapy Autorat Chemotherapy An anthracycline- or taxane-based chemotherapy trastarumab active predicting error trastare-based chemotherapy trastarumab active predicting error may be useful for monitoring of anti-metastasis breast cancer patients, predicting error fragment by constrained by any predicting error metastasic relayse or monitoring of anti-metastasis breast increased on relayse. In addition, apoptotic CTCs are more fraquently encountered during follow-up in DC putters who remain desase-free compared to those with absequent late stapses, aggesting that monitoring prolifemiton and apoptosis in CTCS atom generals further investigation as a tool for predicting and generals.	Food and Dug Administration-approved CellSearch system for CTC detection and evaluation of HER2 expression and developed HER2 immunosconing for CTC SYBR green-based real-time quantitative polymerase chain treation assays obtained from the American Type Culture Collection (Manussa: VA, USA). Fool: Hypaque density gradient AdnaTestBreastCuncer, The estrogen (ER) and progestorem (PR) receptor expression was assessed by RT-	CTCs characterization CTCs detection and characterization. CTCs Cell culture Molecular characterization of single CTCs	Enumeration and characterization of CTCs	Patients with either large openable or locally advanced tumors, tumors with negative hormone receptor status, or receptor-positive unnors but clinically node-positive disease MBC MBC	Case series Case/control Case series Case series	287 21/20 122 42/88	2010 2015 2014 2014 2009	The expression of CK-19 gene in circulating tumor cells of blood samples of metastnic breast emcer women Evaluation of proliferation and apoptosis markers in circulating tumor cells of women with early breast cancer who are candidates for tumor demancy Molecular profiling and predictive value of circulating tumor cells in patients with metastnic breast cancer.	Riethdorf. S. (21) Soltani S., (68) Spiliouki, M.(13) Tewes, M.(133) treated in the neoadjuvantGeparQuattro trial
estrogen and/or progesterone (HoR) and Her2 HER2 targeting therapy. HER2 directed treatment combined with chemotherapy	CellSearch system (Veridex, LLC, Warren, NJ, USA), Immunohistochemical staining (IHC)	Enumeration and characterization of CTCs		МВС	Case series in	468	2013	The prognostic impact of circulating tumor cells in subtypes of metastatic breast cancer	Wallwiener, Markus(134)
EpCAM, cytokenatin (CK) 19, human epidermal growth factor (HER) 2, K167, human teloneration (hTERT) and vimentin chemotherapy neo- adjuvant chemotherapy detection of CTC- related markets. Data from this study suggest that RT4QCR assay for the detection of CTC markets might be useful in	Cell culture quantitutive reverse transcription PCR (RT-qPCB) and RT- qPCRTaqMan assay	Enumeration and characterization of CTCs		Stages 0-III Breast cancer	Case series	221	2014	Detection of circulating tumor cells in patients with breast cancer using the quantitutive RT-PCR assay for monitoring of therapy efficacy	Wang, H. Y.(135)
Estrogen receptor and Her2 postoperative ipsilateral radiotherapy, adjuvant berapy, estotoxic cleuropherapy and pulients reacted with HER2-bargeting therapies with respect to HER2-positive CTC levels because it is not unlikely that high becals of TER2.		Enumeration and characterization of CTCs		MBC	Case series	422	2006	HER2-positive circulating unnor cells indicate poor clinical outcome in stage I to III breast cancer patients	Wulfing, P.(102)
expression levels of mammaglobin, B305D, gama- annitoburyane type A receptor pi subunit (GAAA, pi: CABRP) and B726P ne therapy + hormoe therapy + Herceptin, No treatment and This assay could be valuable tool for monitoring breast cancer patients during and after therapy.		CTCs gene expension level		stage I to IV breast cancer	Case/Control	82/51	2006	Detection of circulating tumor cells in peripheral blood of breast cancer patients during or after therapy using a multigene real-time RT-PCR assay	Zelenmer, B. K.(136)

They indicated that checking of Her2 expression on CTCs might be beneficial in trials with anti-Her2 (48) or optimizing individually tailored therapies in Her2-positive MBC patients (49), also the finding of Her2 mRNA-positive CTCs after the adjuvant chemotherapy completion possibly will provide clinically useful data concerning the efficacy of treatment and operable breast cancer prognosis (50). Her2-positive CTCs count will be required to compare the assay-dependent Her2 status of CTCs to the clinical response to Her2-targeted therapies (48,51,52) because patients with Her2 overexpression in CTCs taken inferior progression-free survival compared with those without CTCs or with Her2-CTCs (53).

Lapatinib, which may be given with the chemotherapy drug capecitabine (Xeloda) or a biological therapy called trastuzumab (Herceptin) is an effective drug in decreasing Her2-positive CTCs in patients with MBC irrespectively of the Her2 status of the primary tumor (54) but in one reported case it is shown that expression of epidermal growth factor receptor (EGFR) could predict response to lapatinib-based treatments (28). The association between EGFR-positive CTCs and Luminal tumors was justified in one study (47).

In one research whole genome amplification 3-5 single CTCs per patient were analyzed by next generation sequencing (NGS) for fiftycancer-related genes (55).

They found 51 sequence variants in 25 genes including both inter- and intra-patient heterogeneity in the mutational status of CTCs. The highest number of somatic deleterious mutations was found in the gene TP53, whose mutation is associated by means of adverse prognosis in breast cancer and supports the applicability of a non-invasive approach based on the liquid biopsy in MBC patients for the development of new therapeutic strategies in precision medicine. Checking the status of mRNA expression eight genes profile incirculatingtumorcells conducted by Reijm E.A., et al., identified that 75% most variable genes which are differentially expressed in two groups of good and poor responders and was significantly associated with outcome (56). This predictor recognized poor responding patients with a sensitivity of 63% and a positive predictive value of 75%, whereas good responding patients were properly predicted in 85% of the cases.

Some of other studied molecule markers are

- Carcino Embryonic Antigen (CEA) and Cancer Antigen 15-3 (CA15-3) amount combination can predict survival (OS and PFS) (33,57-60). Independent prognostic significance of elevated preoperative serum CEA and CA15-3 levels were reconfirmed in Luminal B breast cancer (60,61).
- Interleukin-4,-5,-6,-8-13, Th2 cytokines (62) In CTCnegative patients, expression of interleukin-8 (IL-8) and IL-13 had increased on the occasion of being negative for progesterone receptor. IL-5 was significantly enlarged in patients with human epidermal growth factor receptor 2 (Her2)-positive and lymph node-positive, IL-4 was increased in patients with progesterone receptor-positive and estrogen receptor-negative, in addition, IL-6 levels was escalated in patients with tumor grade G3 lacking progesterone receptor expression. Th2 cytokines are expressively changed in patients who were CTCnegative and progesterone receptor-positive consequently IL-4 plays a leading role in the poor outcome of a number of breast cancer cases (62).
- Stanniocalcin-1 (STC-1), N-acetyl galactosaminyl transferase (GalNacT), and melanoma antigen gene family-A3 (MAGE-A3) assessment by quantitative Real Time (qRT) PCR for mRNA expression showed acorrelation between the total axillary LN (ALN), non- sentinel lymph node (SLN) and SLN histopathology status. So the recognition of CTCs proposes an innovative means to assess the presence of systemic disease spreading relative to SLN and ALN histopathology status (63,64).

- The immune checkpoint regulators such as PD-L1(CD279), PD-L2 (B7-DC; CD273), reported the expression of PD-L1 on CTCs and CTC/PD-L1 assay as a useful screening for liquid biopsy in future clinical trials for stratification and monitoring of cancer patients undergoing immune checkpoint blockade (53,65).
- MUC1, TOP1, TOP2A, CTSD, ST6, CK19 as a promising early marker of disease progression which is useful for both on behalf of both the prediction of outcome and checking the effect of treatment (66).
- Cytokeratin 7, 8, 18 and 19 (67) to predicting early metastatic relapse or monitoring of anti-metastasis treatments (68).
- Apoptotic markers like Ki67 and M30 (69) that are enlarged during clinical dormancy, but the proliferation index is augmented on relapse or late disease recurrence (69).
- Hotspot mutations in ESR1, phosphatidylinositol-4, 5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA), tumor protein p53 (TP53), fibroblast growth factor receptor 1 (FGFR1), and fibroblast growth factor receptor 2 (FGFR2) for termination of ineffective endocrine therapies and substituting another treatment (70).
- Circulating levels transforming growth factor-βeta (TGF-β) and Chemokine (C-X-C Motif) Ligand-1 (CXCL1) which are linked to the poor prognosis, besides lung metastases in patients with breast cancer (71).

Discussion

There has been a growing interest in exploring the clinical significance of CTCs in personalized diagnosis and treatment of breast cancer over the last decade. Here, we report the first systematic review of published studies evaluating the association of CTCs enumeration and molecular identification with clinicopathological characteristics and clinical outcome breast cancer. We identified sixty-nine studies. One of them was related to the best techniques for detection the early markers of response to chemotherapy which may ultimately lead to tailored therapies and avoid cumulative toxicity, using metabolic imaging with [18F] 3'-deoxy-3'fluorothymidine PET (FLT-PET) in women with advanced breast cancer, before and during docetaxel therapy could provide a powerful, albeit expensive, tool to assess immediate responses to therapy (37). Another study was related to using of whole-body FDG-PET/CT in MBC patients who has relapsed/progressive MBC. It is shown that existence of widespread bone metastases identified by FDG-PET/CT is connected directly to the increased CTC numbers in MBC (30). Recently some methods have been established for constantly identifying and quantifying CTCs in blood samples (72-75). Breakthrough in the biosensor field and microfluidic chip for discriminating separation of circulating tumor cells (CTCs) recently have brought the new insight for tracking metastatic breast cancer, CTCs enrichment and isolation platforms (76-79).

Sixty-seven studies were mainly focused on CTC isolation, enumeration and characterization before and during therapy to estimate the utility in changing therapy against maintaining therapy in breast cancer patients. Most assays established for the enumeration of CTCs by means of CellSearch system which rely on the expression of epithelial cell adhesion molecule the (EpCAM).EpCAM is atransmembraneglycoproteinmediating Ca2+-independentcell adhesion moleculeinepithelial which also is involved in cell signaling, migration, proliferation, and differentiation (80-82). The weak point of this method is that may not detect CTCs that express no/low levels of EpCAM like cells which are undergoing epithelial-tomesenchymal transition (EMT) (83), therefore estimated the value of several cytokeratin and CD49f to distinguish CK8/18/19- negative CTCs. For further improvement of CTC detection in breast cancer shared staining of CK8/18/19 and CD49f following CD146/EpCAM enrichment is suggested (84). Furthermore, a functional cell separation method, called collagen adhesion matrix (CAM) assay, has described recently to improve enrichment and identification steps methods (85-87).

Although CTC status was prognostic and changing CTC levels during chemotherapy are useful to monitor therapy efficacy (20,30,31,34,39-41,43,58,88-93), simple enumeration has a low predictive value and cannot predict a specific course of treatment (94,95), and it needs to be added to full clinic-pathological predictive models (88). The early DETECT trials revealed that a serial CTC measurements before and after chemotherapy shown a prognostic value (42,57) but subsequent related trials evaluating targeted agents based on phenotypes of CTCs (96). Molecular characterization of CTCs is an important step forward to the way of personalizing management of breast cancer to inform the discovery of exact therapeutic predictors. Because of high circulating tumor cell (CTC) heterogeneity (97), it can easily say that there is an extreme need for molecular profiling of CTCs including protein expression, phenotypic changes and gene expression (48,98). It has been shown that treatment

molecules like a proto-oncogene Her2 (21,39,50,54,89,99). The result of these studies indicates that after the accomplishment of adjuvant chemotherapy, detection of Her2 positive CTCs may provide clinically useful information related to the treatment efficacy (50). The clinical trial Gepar Quattro combined neoadjuvant (NT) attitudes (epirubicin/cyclophosphamide prior to randomization to docetaxel alone, docetaxel in combination with capecitabine, or docetaxel followed by capecitabine) plus additional trastuzumab treatment in patients who have Her2-positive tumors then shown that CTCs detection had not been connected to the primary tumor characteristics, but CTC Her2 overexpression was limited to ductal carcinomas and was completely connected to the higher tumor stage (21). CTC numbers were truncated in patients with primary breast cancer, in addition, the reduction in CTCs amount during treatment was not related to the standard clinical characteristics and primary tumor response so the evidence of the CTCs Her2 might be beneficial for Her2-directed therapies monitoring (21). Moreover several studies checked the prognostic impact of Her2 in combination with some other cellular markers like hormone receptors (ER and PR) and Her2expression (45,46,55,100-102), epidermal growth factor receptor (EGFR) and Her2 in reaction to a treatment regime comprising lapatinib (a dual EGFR and Her2 tyrosine kinase inhibitor) (28). EGFR-positive CTCs were associated with Luminal tumors in apatient who is impressed by chemorefractory metastatic Her2-positive breast cancer receiving lapatinib (47). Disease progress was completely connected to a recurrence in CTCs; representing EGFR expression could calculate aresponse to lapatinib-based treatments (28).

efficiency or recurrent of breast tumors (MBC or TNBC)

could be predictable with analysis the expression of some

CTCs prognostic outcome was fewer evident in Her2 positive MBC patients cured by targeted therapy (45), which support this idea that the quantity of CTCs, together with the biologic characteristics, desires to be wisely taken into account in thefuture analysis. In nonmetastatic breast cancer CTC biomarker analysis more than Her2might be useful as a replacement marker for therapeutic selection and monitoring since heterogeneity of the biomarker distribution in CTCs and the lack of correlation with the primary tumor biomarker status were found (47). By way of illustration a trial which checked multidrug-resistance-related proteins the (MRPs), aldehyde dehydrogenase 1 (ALDH1), estrogen receptor an (ERa) plus Her2/neu, indicated to theexistence of CTCs expressing MRPs and ALDH1, is prognostic for chemotherapy response in MBC patients (43). A difference in PFS was obvious in two groups of CTCs+and CTCs-patients that were undersized in patients with a drug resistance CTCs profile and in patients who has expressed two or more MRPs on their CTCs, so the existence of CTCs expressing MRPs and ALDH1 stands prognostic for chemotherapy (22,103).

Four markers (EPCAM, CD47, CD44 and MET) which are known to be involved in tumor genesis (104, 105) and are co-regulated with the TGF-βsignaling pathway (106)has been checked in the earliest stage of breast cancer to plan intervention settings that modify the patient-specific survival prospect (29). Through a branching process model, the survival times and this four markers gene expression correlation can predict personalized OS or PFS especially drugs such as bisphosphonates. The analysis of circulating tumor cells effects on the disease progression offering a quantitative measurement of the cell driver mutations which are responsible for invading the bone tissue. This model lets to plan intervention scenarios that adjust the patientspecific survival chance by altering the populations of circulating tumor cells, in addition, the situation could be extended to other cancer metastasis dynamics (107).

Thanks to several advancements in molecular genetics technology like high-throughput NGS, multi-gene mutation analysisthat provides comprehensive genetic information on breast cancer molecular pathology, make it much easier to find a precision and more effective therapeutic targets (108). Two studies, evaluating genomic alterations in cancer-related genes of CTCs to provide insights into mechanisms of tumor metastases and drug resistance (55,56). It has been shown that CTC characteristics are more closely linked to the dynamic modifications of the disease status and CTCs genetic analysis is a non-invasive approach based on the liquid biopsy in metastatic breast cancer patients which, in perspective, should allow investigating the clonal evolution of the tumor for the development of new therapeutic strategies in precision medicine (55). Some researchers indicated to the fact that NGS in combination with Fluorescence-activated cell sorting (FACS) and Immunohistochemistry (IHC) is an excellent way to outline copy number in a single cell in several cancer types, as well as breast cancer (46,109-111). Also, single cell analysis has identified theclinically significant genomic difference between primary tumors and CTCs (112-114) offer fundamental information for personalized treatment decisions and shed light on drug resistance and tumor heterogeneity mechanisms (114).

Especiallyforindividualized testing of thedrug some studies have been working on in vitro and in vivoCTCs

culture (115,116) and assessed genemutations in circulating tumor cell from cancer patients by next generation sequencing (NGS) (55,117). Mutation detection in PIK3CA,FGFR2, and ESR-1 through CTCiChip in breast cancer patients and drug sensitivity testing revealed that the selective estrogen receptor modulators (SERMs) tamoxifen and raloxifene, and the selective ER degrader (SERD) fulvestrant, were ineffective inESR-1 mutant cells. Cultured CTCs were highly sensitiveto the inhibitor BYL719 and the PIK3CA FGFR2 inhibitorAZD4547 (118). The enumeration of CTCs using Cell Search system and CAM assay which rely on the expression of the cell surface marker (EpCAM,CD49f, CD146/EpCAM enrichment) during or after treatment is mostly beneficial for predicting early metastatic relapse.

In conclusion it can said that the clinical significance of CTCs molecular profiling and characteristics is more accurate than CTCs enumeration before and during treatment, especially for making the bestpersonalized treatment decision CTCs molecular markers like Her2, EGFR, CEA, CA15-3, CK19, Ki67, PIK3CA, TGF- β , and CXCL1 are really valuable to be checked.

References

- 1. National Comprehensive Cancer Network Clinical Practice Guidelines in Oncology. (Accessed December 2016, 30, at http://www.nccn.org/professionals/physician_gls/PDF/bre ast.pdf.
- ACS Research Updates,10 Must-Know 2015 Global Cancer Facts. American Cancer Society. 2015. (Accessed December 2016, 30, at https://www.cancer.org/latestnews/10-must-know-2015-global-cancer-facts.html.(
- Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature 2000;406:747-52.
- Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 2001;98:10869-74.
- Gort M, Broekhuis M, Otter R, Klazinga NS. Improvement of best practice in early breast cancer: actionable surgeon and hospital factors. Breast Cancer Res Treat 2007;102:219-26.
- Elston CW EI, Pinder SE. Prognostic factors in invasive carcinoma of the breast. Clin Oncol (R Coll Radiol) 1998;10:3.
- 7. Curtis C, Shah SP, Chin S-F, Turashvili G, Rueda OM, Dunning MJ, et al. The genomic and transcriptomic

architecture of 2,000 breast tumours reveals novel subgroups. Nature 2012;486:346-52.

- Milioli HH, Vimieiro R, Riveros C, Tishchenko I, Berretta R, Moscato P. The Discovery of Novel Biomarkers Improves Breast Cancer Intrinsic Subtype Prediction and Reconciles the Labels in the METABRIC Data Set. PLoS ONE 2015;10:e0129711.
- Van Poznak C, Somerfield MR, Bast RC, Cristofanilli M, Goetz MP, Gonzalez-Angulo AM, et al. Use of biomarkers to guide decisions on systemic therapy for women with metastatic breast cancer: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol 2015;20:2695-704.
- Ross JS, Symmans WF, Pusztai L, Hortobagyi GN. Breast cancer biomarkers. Adv Clin Chem 2004;40:99-125.
- Martelotto LG, Ng CK, Piscuoglio S, Weigelt B, Reis-Filho JS. Breast cancer intra-tumor heterogeneity. Breast Cancer Res 2014;16:1-11.
- Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 2012;366:883-92.
- 13. Bedard PL, Hansen AR, Ratain MJ, Siu LL. Tumour heterogeneity in the clinic. Nature 2013;501:355-64.
- Pantel K, Alix-Panabières C. Real-time liquid biopsy in cancer patients: fact or fiction? Cancer Res 2013;73:6384-8.
- Sun YF, Yang XR, Zhou J, Qiu SJ, Fan J, Xu Y. Circulating tumor cells: advances in detection methods, biological issues, and clinical relevance. J Cancer Res Clin Oncol 2011;137:1151-73.
- Allard WJ, Matera J, Miller MC, Repollet M, Connelly MC, Rao C, et al. Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin Cancer Res 2004;10:6897-904.
- Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Matera J, Miller MC, et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med 2004;351:781-91.
- Bidard FC, Mathiot C, Delaloge S, Brain E, Giachetti S, de Cremoux P, et al. Single circulating tumor cell detection and overall survival in nonmetastatic breast cancer. Ann Oncol 2010;21:729-33.
- Xenidis N, Ignatiadis M, Apostolaki S, Perraki M, Kalbakis K, Agelaki S, et al. Cytokeratin-19 mRNApositive circulating tumor cells after adjuvant chemotherapy in patients with early breast cancer. J Clin Oncol 2009;27:2177-84.
- 20. Cristofanilli M, Hayes DF, Budd GT, Ellis MJ, Stopeck

A, Reuben JM, et al. Circulating tumor cells: a novel prognostic factor for newly diagnosed metastatic breast cancer. J Clin Oncol 2005;23:1420-30.

- Riethdorf S, Muller V, Zhang L, Rau T, Loibl S, Komor M, et al. Detection and HER2 expression of circulating tumor cells: prospective monitoring in breast cancer patients treated in the neoadjuvant GeparQuattro trial. Clin Cancer Res 2010;16:2634-45.
- Gradilone A, Naso G, Raimondi C, Cortesi E, Gandini O, Vincenzi B, et al. Circulating tumor cells (CTCs) in metastatic breast cancer (MBC): prognosis, drug resistance and phenotypic characterization. Ann Oncol 2011;22:86-92.
- 23. Hayes DF, Smerage J. Is there a role for circulating tumor cells in the management of breast cancer? Clin Cancer Res 2008;14:3646-50.
- 24. Giuliano M, Herrera S, Christiny P, Shaw C, Creighton CJ, Mitchell T, et al. Circulating and disseminated tumor cells from breast cancer patient-derived xenograft-bearing mice as a novel model to study metastasis. Breast Cancer Res 2015;17:3.
- Toss A, Mu Z, Fernandez S, Cristofanilli M. CTC enumeration and characterization: moving toward personalized medicine. Ann Trans Med 2014;2:108.
- 26. Smith BM, Slade MJ, English J, Graham H, Luchtenborg M, Sinnett HD, et al. Response of circulating tumor cells to systemic therapy in patients with metastatic breast cancer: comparison of quantitative polymerase chain reaction and immunocytochemical techniques. J Clin Oncol 2000;18:1432-9.
- Liu MC, Shields PG, Warren RD, Cohen P, Wilkinson M, Ottaviano YL, et al. Circulating tumor cells: a useful predictor of treatment efficacy in metastatic breast cancer. J Clin Oncol 2009;27:5153-9.
- Liu Z, Fusi A, Schmittel A, Tinhofer I, Schneider A, Keilholz U. Eradication of EGFR-positive circulating tumor cells and objective tumor response with lapatinib and capecitabine. Cancer Biol Ther 2010;10:860-4.
- Ascolani G, Occhipinti A, Lio P. Modelling circulating tumour cells for personalised survival prediction in metastatic breast cancer. PLoS Comput Biol 2015;11:e1004199.
- De Giorgi U, Valero V, Rohren E, Mego M, Doyle GV, Miller MC, et al. Circulating tumor cells and bone metastases as detected by FDG-PET/CT in patients with metastatic breast cancer. Ann Oncol 2010;21:33-9.
- Green TL, Cruse JM, Lewis RE, Craft BS. Circulating tumor cells (CTCs) from metastatic breast cancer patients linked to decreased immune function and response to treatment. Exp Mol Pathol 2013;95:174-9.
- 32. Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Matera J,

Miller MC, et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med 2004;351:781-91.

- 33. Bidard FC, Peeters DJ, Fehm T, Nole F, Gisbert-Criado R, Mavroudis D, et al. Clinical validity of circulating tumour cells in patients with metastatic breast cancer: a pooled analysis of individual patient data. Lancet Oncol 2014;15:406-14.
- 34. Bidard F-C, Mathiot C, Delaloge S, Brain E, Giachetti S, de Cremoux P, et al. Single circulating tumor cell detection and overall survival in nonmetastatic breast cancer. Ann Oncol 2010;21:729-33.
- 35. Pierga JY, Hajage D, Bachelot T, Delaloge S, Brain E, Campone M, et al. High independent prognostic and predictive value of circulating tumor cells compared with serum tumor markers in a large prospective trial in firstline chemotherapy for metastatic breast cancer patients. Ann Oncol 2012;23:618-24.
- 36. Pierga JY, Bidard FC, Mathiot C, Brain E, Delaloge S, Giachetti S, et al. Circulating tumor cell detection predicts early metastatic relapse after neoadjuvant chemotherapy in large operable and locally advanced breast cancer in a phase II randomized trial. Clin Cancer Res 2008;14:618-24.
- 37. Contractor K, Aboagye EO, Jacob J, Challapalli A, Coombes RC, Stebbing J. Monitoring early response to taxane therapy in advanced breast cancer with circulating tumor cells and [18F] 3'-deoxy-3'-fluorothymidine PET: a pilot study. Biomark Med 2012;6:231-3.
- 38. De Giorgi U, Valero V, Rohren E, Dawood S, Ueno NT, Miller MC, et al. Circulating tumor cells and [18F]fluorodeoxyglucose positron emission tomography/computed tomography for outcome prediction in metastatic breast cancer. J Clin Oncol 2009;27:3303-11.
- Hall C, Karhade M, Laubacher B, Anderson A, Kuerer H, DeSynder S, et al. Circulating Tumor Cells After Neoadjuvant Chemotherapy in Stage I-III Triple-Negative Breast Cancer. Ann Surg Oncol 2015;22:S552-8.
- 40. Karhade M, Hall C, Mishra P, Anderson A, Kuerer H, Bedrosian I, et al. Circulating tumor cells in nonmetastatic triple-negative breast cancer. Breast Cancer Res Treat 2014;147:325-33.
- 41. Hall CS, Karhade M, Laubacher BA, Kuerer HM, Krishnamurthy S, DeSnyder S, et al. Circulating Tumor Cells and Recurrence After Primary Systemic Therapy in Stage III Inflammatory Breast Cancer. J Natl Cancer Inst 2015;107:djv250.
- 42. Müller V, Riethdorf S, Rack B, Janni W, Fasching PA, Solomayer E, et al. Prognostic impact of circulating tumor cells assessed with the CellSearch System[™] and

AdnaTest Breast[™] in metastatic breast cancer patients: the DETECT study. Breast Cancer Res 2012;14:1-8.

- 43. Giuliano M, Giordano A, Jackson S, Hess KR, De Giorgi U, Mego M, et al. Circulating tumor cells as prognostic and predictive markers in metastatic breast cancer patients receiving first-line systemic treatment. Breast Cancer Res 2011;13:1-9.
- 44. Giordano A, Giuliano M, De Laurentiis M, Arpino G, Jackson S, Handy BC, et al. Circulating tumor cells in immunohistochemical subtypes of metastatic breast cancer: lack of prediction in HER2-positive disease treated with targeted therapy. Ann Oncol 2012;23:1144-50.
- 45. Giordano A, Giuliano M, De Laurentiis M, Eleuteri A, Iorio F, Tagliaferri R, et al. Artificial neural network analysis of circulating tumor cells in metastatic breast cancer patients. Breast Cancer Res Treat 2011;129:451-8.
- 46. Peeters DJ, van Dam PJ, Van den Eynden GG, Rutten A, Wuyts H, Pouillon L, et al. Detection and prognostic significance of circulating tumour cells in patients with metastatic breast cancer according to immunohistochemical subtypes. Br J Cancer 2014;110:375-83.
- 47. Nadal R, Fernandez A, Sanchez-Rovira P, Salido M, Rodriguez M, Garcia-Puche JL, et al. Biomarkers characterization of circulating tumour cells in breast cancer patients. Breast Cancer Res 2012;14:R71.
- Ignatiadis M, Rothe F, Chaboteaux C, Durbecq V, Rouas G, Criscitiello C, et al. HER2-positive circulating tumor cells in breast cancer. PLoS One 2011;6:e15624.
- 49. Ligthart ST, Coumans FAW, Attard G, Mulick Cassidy A, de Bono JS, Terstappen LWMM. Unbiased and automated identification of a circulating tumour cell definition that associates with overall survival. Plos One 2011;6:e27419.
- 50. Apostolaki S, Perraki M, Pallis A, Bozionelou V, Agelaki S, Kanellou P, et al. Circulating HER2 mRNA-positive cells in the peripheral blood of patients with stage I and II breast cancer after the administration of adjuvant chemotherapy: evaluation of their clinical relevance. Ann Oncol 2007;18(5):851-8.
- 51. Fehm T, Becker S, Duerr-Stoerzer S, Sotlar K, Mueller V, Wallwiener D, et al. Determination of HER2 status using both serum HER2 levels and circulating tumor cells in patients with recurrent breast cancer whose primary tumor was HER2 negative or of unknown HER2 status. Breast Cancer Res 2007;9:R74.
- 52. Fehm T, Hoffmann O, Aktas B, Becker S, Solomayer EF, Wallwiener D, et al. Detection and characterization of circulating tumor cells in blood of primary breast cancer patients by RT-PCR and comparison to status of bone

marrow disseminated cells. Breast Cancer Res 2009;11:R59.

- 53. Munzone E, Nole F, Goldhirsch A, Botteri E, Esposito A, Zorzino L, et al. Changes of HER2 status in circulating tumor cells compared with the primary tumor during treatment for advanced breast cancer. Clin Breast Cancer 2010;10:392-7.
- 54. Agelaki S, Kalykaki A, Markomanolaki H, Papadaki MA, Kallergi G, Hatzidaki D, et al. Efficacy of Lapatinib in Therapy-Resistant HER2-Positive Circulating Tumor Cells in Metastatic Breast Cancer. PLoS ONE 2015;10:e0123683.
- 55. De Luca F, Rotunno G, Salvianti F, Galardi F, Pestrin M, Gabellini S, et al. Mutational analysis of single circulating tumor cells by next generation sequencing in metastatic breast cancer. Oncotarget 2016;7:26107-19.
- 56. Reijm EA, Sieuwerts AM, Smid M, Vries JB, Mostert B, Onstenk W, et al. An 8-gene mRNA expression profile in circulating tumor cells predicts response to aromatase inhibitors in metastatic breast cancer patients. BMC Cancer 2016;16:123.
- 57. Pierga JY, Hajage D, Bachelot T, Delaloge S, Brain E, Campone M, et al. High independent prognostic and predictive value of circulating tumor cells compared with serum tumor markers in a large prospective trial in firstline chemotherapy for metastatic breast cancer patients. Ann Oncol 2012;23:618-24.
- Hartkopf AD, Wagner P, Wallwiener D, Fehm T, Rothmund R. Changing levels of circulating tumor cells in monitoring chemotherapy response in patients with metastatic breast cancer. Anticancer Res 2011;31:979-84.
- 59. Muller V, Stahmann N, Riethdorf S, Rau T, Zabel T, Goetz A, et al. Circulating tumor cells in breast cancer: correlation to bone marrow micrometastases, heterogeneous response to systemic therapy and low proliferative activity. Clin Cancer Res 2005;11:3678-85.
- Shao Y, Sun X, He Y, Liu C, Liu H. Elevated Levels of Serum Tumor Markers CEA and CA15-3 Are Prognostic Parameters for Different Molecular Subtypes of Breast Cancer. Plos One 2015;10:e0133830.
- Ebeling FG, Stieber P, Untch M, Nagel D, Konecny GE, Schmitt UM, et al. Serum CEA and CA 15-3 as prognostic factors in primary breast cancer. Br J Cancer 2002;86:1217-22.
- 62. Konig A, Vilsmaier T, Rack B, Friese K, Janni W, Jeschke U, et al. Determination of Interleukin-4, -5, -6, -8 and -13 in Serum of Patients with Breast Cancer Before Treatment and its Correlation to Circulating Tumor Cells. Anticancer Res 2016;36:3123-30.
- 63. Lu J, Fan T, Zhao Q, Zeng W, Zaslavsky E, Chen JJ, et al. Isolation of circulating epithelial and tumor progenitor

cells with an invasive phenotype from breast cancer patients. Int J Cancer 2010;126:669-83 .

- Nakagawa T, Martinez SR, Goto Y, Koyanagi K, Kitago M, Shingai T, et al. Detection of circulating tumor cells in early-stage breast cancer metastasis to axillary lymph nodes. Clin Cancer Res 2007;13:4105-10.
- Mazel M, Jacot W, Pantel K, Bartkowiak K, Topart D, Cayrefourcq L, et al. Frequent expression of PD-L1 on circulating breast cancer cells. Mol Oncol 2015;9:1773-82.
- 66. Mikulova V, Cabinakova M, Janatkova I, Mestek O, Zima T, Tesarova P. Detection of circulating tumor cells during follow-up of patients with early breast cancer: Clinical utility for monitoring of therapy efficacy. Scand J Clin Lab Invest 2014;74:132-42.
- Serrano MJ, Rovira PS, Martinez-Zubiaurre I, Rodriguez MD, Fernandez M, Lorente JA. Dynamics of circulating tumor cells in early breast cancer under neoadjuvant therapy. Exp Ther Med 2012;4:43-8.
- Soltani S, Mokarian F, Panjehpour M. The expression of CK-19 gene in circulating tumor cells of blood samples of metastatic breast cancer women. Res Pharm Sci 2015;10:485-96.
- 69. Spiliotaki M, Mavroudis D, Kapranou K, Markomanolaki H, Kallergi G, Koinis F, et al. Evaluation of proliferation and apoptosis markers in circulating tumor cells of women with early breast cancer who are candidates for tumor dormancy. Breast Cancer Res 2014;16(6):485-96.
- Guttery DS, Page K, Hills A, Woodley L, Marchese SD, Rghebi B, et al. Noninvasive detection of activating estrogen receptor 1 (ESR1) mutations in estrogen receptor-positive metastatic breast cancer. Clin Chem 2015;61:974-82.
- 71. Divella R, Daniele A, Savino E, Palma F, Bellizzi A, Giotta F, et al. Circulating levels of transforming growth factor-betaeta (TGF-beta) and chemokine (C-X-C motif) ligand-1 (CXCL1) as predictors of distant seeding of circulating tumor cells in patients with metastatic breast cancer. Anticancer Res 2013;33:1491-7.
- 72. Stott SL, Hsu CH, Tsukrov DI, Yu M, Miyamoto DT, Waltman BA, et al. Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc Natl Acad Sci U S A 2010;107:18392-7.
- Etayash H, Jiang K, Azmi S, Thundat T, Kaur K. Realtime Detection of Breast Cancer Cells Using Peptidefunctionalized Microcantilever Arrays. Sci Rep 2015;5:13967.
- Mostert B, Sleijfer S, Foekens JA, Gratama JW. Circulating tumor cells (CTCs): detection methods and their clinical relevance in breast cancer. Cancer Treat Rev 2009;35:463-74.

- Wen CY, Wu LL, Zhang ZL, Liu YL, Wei SZ, Hu J, et al. Quick-response magnetic nanospheres for rapid, efficient capture and sensitive detection of circulating tumor cells. ACS Nano 2014;8:941-9.
- Yu M, Stott S, Toner M, Maheswaran S, Haber DA. Circulating tumor cells: approaches to isolation and characterization. J Cell Biol 2011;192:373-82.
- 77. Hyun KA, Lee TY, Lee SH, Jung HI. Two-stage microfluidic chip for selective isolation of circulating tumor cells (CTCs). Biosens Bioelectron 2015;67:86-92.
- Lim YC, Wiegmans AP. Tracking metastatic breast cancer: the future of biology in biosensors. Med Oncol 2016;33:1-8.
- 79. Lim YC, Wiegmans AP. Tracking metastatic breast cancer: the future of biology in biosensors. Med Oncol (Northwood, London, England) 2016;33:36.
- Litvinov SV, Velders MP, Bakker HA, Fleuren GJ, Warnaar SO. Ep-CAM: a human epithelial antigen is a homophilic cell-cell adhesion molecule. J Cell Biol 1994;125:437-46.
- Maetzel D, Denzel S, Mack B, Canis M, Went P, Benk M, et al. Nuclear signalling by tumour-associated antigen EpCAM. Nat Cell Biol 2009;11:162-71.
- 82. Osta WA, Chen Y, Mikhitarian K, Mitas M, Salem M, Hannun YA, et al. EpCAM is overexpressed in breast cancer and is a potential target for breast cancer gene therapy. Cancer Res 2004;64:5818-24.
- Schneck H, Gierke B, Uppenkamp F, Behrens B, Niederacher D, Stoecklein NH, et al. EpCAM-Independent Enrichment of Circulating Tumor Cells in Metastatic Breast Cancer. Plos One 2015;10:e0144535.
- Mostert B, Kraan J, Sieuwerts AM, van der Spoel P, Boltde Vries J, Prager-van der Smissen WJ, et al. CD49fbased selection of circulating tumor cells (CTCs) improves detection across breast cancer subtypes. Cancer Lett 2012;319:49-55.
- Lu J, Fan T, Zhao Q, Zeng W, Zaslavsky E, Chen JJ, et al. Isolation of circulating epithelial and tumor progenitor cells with an invasive phenotype from breast cancer patients. Int J Cancer 2010;126:669-83.
- Fan T, Zhao Q, Chen JJ, Chen WT, Pearl ML. Clinical significance of circulating tumor cells detected by an invasion assay in peripheral blood of patients with ovarian cancer. Gynecol Oncol 2009;112:185-91.
- Paris PL, Kobayashi Y, Zhao Q, Zeng W, Sridharan S, Fan T, et al. Functional phenotyping and genotyping of circulating tumor cells from patients with castration resistant prostate cancer. Cancer Lett 2009;277:164-73.
- Bidard F-C, Peeters DJ, Fehm T, Nolé F, Gisbert-Criado R, Mavroudis D, et al. Clinical validity of circulating tumour cells in patients with metastatic breast cancer: a

pooled analysis of individual patient data. Lancet Oncol 2014;15:406-14.

- Dawood S, Broglio K, Valero V, Reuben J, Handy B, Islam R, et al. Circulating tumor cells in metastatic breast cancer: from prognostic stratification to modification of the staging system? Cancer 2008;113:2422-30.
- 90. Franken B, de Groot MR, Mastboom WJ, Vermes I, van der Palen J, Tibbe AG, et al. Circulating tumor cells, disease recurrence and survival in newly diagnosed breast cancer. Breast Cancer Res 2012;14:1-8.
- 91. Hayes DF, Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Miller MC, et al. Circulating tumor cells at each follow-up time point during therapy of metastatic breast cancer patients predict progression-free and overall survival. Clin Cancer Res 2006;12:4218-24.
- 92. Nole F, Munzone E, Zorzino L, Minchella I, Salvatici M, Botteri E, et al. Variation of circulating tumor cell levels during treatment of metastatic breast cancer: prognostic and therapeutic implications. Ann Oncol 2008;19:891-7.
- 93. Wallwiener M, Riethdorf S, Hartkopf AD, Modugno C, Nees J, Madhavan D, et al. Serial enumeration of circulating tumor cells predicts treatment response and prognosis in metastatic breast cancer: a prospective study in 393 patients. BMC Cancer 2014;14:1-12.
- 94. Lowe AC, Pignon JC, Carvo I, Drage MG, Constantine NM, Jones N, et al. Young investigator challenge: Application of cytologic techniques to circulating tumor cell specimens: Detecting activation of the oncogenic transcription factor STAT3. Cancer Cytopathol 2015;123:696-706.
- 95. Forte VA, Barrak DK, Elhodaky M, Tung L, Snow A, Lang JE. The potential for liquid biopsies in the precision medical treatment of breast cancer. Cancer Biol Med 2016;13:19-40.
- 96. Schramm A, Friedl TW, Schochter F, Scholz C, de Gregorio N, Huober J, et al. Therapeutic intervention based on circulating tumor cell phenotype in metastatic breast cancer: concept of the DETECT study program. Arch Gynecol Obstet 2016;293:271-81.
- Sigal EK, Jeffrey SS, eds. Tumor Heterogeneity and Single-cell Analysis of CTCs. Circulating Tumor Cells: John Wiley & Sons, 2016:313-28.
- 98. Tewes M, Aktas B, Welt A, Mueller S, Hauch S, Kimmig R, et al. Molecular profiling and predictive value of circulating tumor cells in patients with metastatic breast cancer: an option for monitoring response to breast cancer related therapies. Breast Cancer Res Treat 2009;115:581-90.
- 99. Fehm T, Muller V, Aktas B, Janni W, Schneeweiss A, Stickeler E, et al. HER2 status of circulating tumor cells in patients with metastatic breast cancer: a prospective,

multicenter trial. Breast Cancer Res Treat 2010;124:403-12.

- 100. Park YH, Shin HT, Jung HH, Choi YL, Ahn T, Park K, et al. Role of HER2 mutations in refractory metastatic breast cancers: targeted sequencing results in patients with refractory breast cancer. Oncotarget 2015;6:32027-38.
- 101. allwiener M, Hartkopf AD, Baccelli I, Riethdorf S, Schott S, Pantel K, et al. The prognostic impact of circulating tumor cells in subtypes of metastatic breast cancer. Breast Cancer Res Treat 2013;137:503-10.
- 102. Wulfing P, Borchard J, Buerger H, Heidl S, Zanker KS, Kiesel L, et al. HER2-positive circulating tumor cells indicate poor clinical outcome in stage I to III breast cancer patients. Clin Cancer Res 2006;12:1715-20.
- 103. Giuliano M, Giordano A, Jackson S, Hess KR, De Giorgi U, Mego M, et al. Circulating tumor cells as prognostic and predictive markers in metastatic breast cancer patients receiving first-line systemic treatment. Breast Cancer Res 2011;13:67.
- 104. Gentile A, Trusolino L, Comoglio PM. The Met tyrosine kinase receptor in development and cancer. Cancer Mtastasis Rev 2008;27:85-94.
- 105. Gires O, Klein CA, Baeuerle PA. On the abundance of EpCAM on cancer stem cells. Nat Rev Cancer 2009;9:143.
- 106. Shimada K, Nakajima A, Ikeda K, Ishibashi K, Shimizu N, Ito K. CD47 regulates the TGF-beta signaling pathway in osteoblasts and is distributed in Meckel's cartilage. J Oral Sci 2011;53:169-75.
- 107. Ascolani G, Occhipinti A, Liò P. Modelling Circulating Tumour Cells for Personalised Survival Prediction in Metastatic Breast Cancer. PLoS Comput Biol 2015;11:e1004199.
- 108. Roy-Chowdhuri S, de Melo Gagliato D, Routbort MJ, Patel KP, Singh RR, Broaddus R, et al. Multigene Clinical Mutational Profiling of Breast Carcinoma Using Next-Generation Sequencing. American J Clin Pathol 2015;144:713-21.
- 109. Fuhrmann C, Schmidt-Kittler O, Stoecklein NH, Petat-Dutter K, Vay C, Bockler K, et al. High-resolution array comparative genomic hybridization of single micrometastatic tumor cells. Nucleic Acids Res 2008;36:e39-e.
- 110. Stoecklein NH, Hosch SB, Bezler M, Stern F, Hartmann CH, Vay C, et al. Direct Genetic Analysis of Single Disseminated Cancer Cells for Prediction of Outcome and Therapy Selection in Esophageal Cancer. Cancer Cell 2008;13:441-53.
- 111. Navin N, Kendall J, Troge J, Andrews P, Rodgers L, McIndoo J, et al. Tumour evolution inferred by single-cell sequencing. Nature. 2011;472:90-4.

- 112. Heitzer E, Auer M, Gasch C, Pichler M, Ulz P, Hoffmann EM, et al. Complex tumor genomes inferred from single circulating tumor cells by array-CGH and next-generation sequencing. Cancer Res 2013;73:2965-75.
- 113. Pestrin M, Salvianti F, Galardi F, De Luca F, Turner N, Malorni L, et al. Heterogeneity of PIK3CA mutational status at the single cell level in circulating tumor cells from metastatic breast cancer patients. Mol Oncol 2015;9:749-57.
- 114. Polzer B, Medoro G, Pasch S, Fontana F, Zorzino L, Pestka A, et al. Molecular profiling of single circulating tumor cells with diagnostic intention. EMBO Mol Med 2014;6:1371-86.
- 115. Yu M, Bardia A, Aceto N, Bersani F, Madden MW, Donaldson MC, et al. Ex vivo culture of circulating breast tumor cells for individualized testing of drug susceptibility. Science 2014;345:216-20.
- 116. Helzer KT, Barnes HE, Day L, Harvey J, Billings PR, Forsyth A. Circulating tumor cells are transcriptionally similar to the primary tumor in a murine prostate model. Cancer Res 2009;69:7860-6.
- 117. Marchetti A, Del Grammastro M, Felicioni L, Malatesta S, Filice G, Centi I, et al. Assessment of <italic>EGFR</italic> Mutations in Circulating Tumor Cell Preparations from NSCLC Patients by Next Generation Sequencing: Toward a Real-Time Liquid Biopsy for Treatment. PLoS ONE 2014;9:e103883.
- 118. Yu M, Bardia A, Aceto N, Bersani F, Madden MW, Donaldson MC, et al. Ex vivo culture of circulating breast tumor cells for individualized testing of drug susceptibility. Science (New York, NY) 2014;345:216-20.
- 119. Cristofanilli M. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. Semin Oncol 2006;33:S9-14.
- 120. Hayes DF, Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Miller MC, et al. Circulating tumor cells at each follow-up time point during therapy of metastatic breast cancer patients predict progression-free and overall survival. Clin Cancer Res 2006;12:4218-24.
- 121. Liu MC, Shields PG, Warren RD, Cohen P, Wilkinson M, Ottaviano YL, et al. Circulating tumor cells: a useful predictor of treatment efficacy in metastatic breast cancer. J Clin Oncol 2009;27:5153-9.
- 122. Lucci A, Hall CS, Lodhi AK, Bhattacharyya A, Anderson AE, Xiao LC, et al. Circulating tumour cells in nonmetastatic breast cancer: a prospective study. Lancet Oncol 2012;13:688-95.
- 123. Nakamura S, Yagata H, Ohno S, Yamaguchi H, Iwata H, Tsunoda N, et al. Multi-center study evaluating circulating tumor cells as a surrogate for response to

treatment and overall survival in metastatic breast cancer. Breast Cancer 2010;17:199-204.

- 124. Pachmann K, Camara O, Kavallaris A, Krauspe S, Malarski N, Gajda M, et al. Monitoring the response of circulating epithelial tumor cells to adjuvant chemotherapy in breast cancer allows detection of patients at risk of early relapse. J Clin Oncol 2008;26:1208-15.
- 125. Rack B, Schindlbeck C, Jückstock J, Andergassen U, Hepp P, Zwingers T, et al. Circulating Tumor Cells Predict Survival in Early Average-to-High Risk Breast Cancer Patients. J Natl Cancer Instit 2014;106:dju066.
- 126. Satelli A, Brownlee Z, Mitra A, Meng QH, Li S. Circulating tumor cell enumeration with a combination of epithelial cell adhesion molecule- and cell-surface vimentin-based methods for monitoring breast cancer therapeutic response. Clin Chem 2015;61:259-66.
- 127. Serrano MJ, Sanchez-Rovira P, Delgado-Rodriguez M, Gaforio JJ. Detection of circulating tumor cells in the context of treatment: prognostic value in breast cancer. Cancer Biol Ther 2009;8:671-5.
- 128. de Albuquerque A, Kaul S, Breier G, Krabisch P, Fersis N. Multimarker Analysis of Circulating Tumor Cells in Peripheral Blood of Metastatic Breast Cancer Patients: A Step Forward in Personalized Medicine. Breast care (Basel, Switzerland) 2012;7:7-12.
- 129. Gradilone A, Naso G, Raimondi C, Cortesi E, Gandini O, Vincenzi B, et al. Circulating tumor cells (CTCs) in metastatic breast cancer (MBC): prognosis, drug resistance and phenotypic characterization. Ann Oncol 2010;22:86-92.
- 130. Gradilone A, Raimondi C, Naso G, Silvestri I, Repetto L, Palazzo A, et al. How circulating tumor cells escape from multidrug resistance: translating molecular mechanisms in

metastatic breast cancer treatment. Am J Clin Oncol 2011;34:625-7.

- 131. Jansson S, Bendahl P-O, Larsson A-M, Aaltonen KE, Rydén L. Prognostic impact of circulating tumor cell apoptosis and clusters in serial blood samples from patients with metastatic breast cancer in a prospective observational cohort. BMC Cancer 2016;16:433.
- 132. Reinholz MM, Kitzmann KA, Tenner K, Hillman D, Dueck AC, Hobday TJ, et al. Cytokeratin-19 and mammaglobin gene expression in circulating tumor cells from metastatic breast cancer patients enrolled in North Central Cancer Treatment Group trials, N0234/336/436/437. Clin Cancer Res 2011;17:7183-93.
- 133. Tewes M, Aktas B, Welt A, Mueller S, Hauch S, Kimmig R, et al. Molecular profiling and predictive value of circulating tumor cells in patients with metastatic breast cancer: an option for monitoring response to breast cancer related therapies. Breast Cancer Res Treat 2009;115:581-90.
- 134. Wallwiener M, Hartkopf AD, Baccelli I, Riethdorf S, Schott S, Pantel K, et al. The prognostic impact of circulating tumor cells in subtypes of metastatic breast cancer. Breast Cancer Res Treat 2013;137:503-10.
- 135. Wang HY, Ahn S, Kim S, Park S, Han H, Sohn JH, et al. Detection of circulating tumor cells in patients with breast cancer using the quantitative RT-PCR assay for monitoring of therapy efficacy. Exp Mol Pathol 2014;97:445-52.
- 136. Zehentner BK, Secrist H, Hayes DC, Zhang X, Ostenson RC, Loop S, et al. Detection of circulating tumor cells in peripheral blood of breast cancer patients during or after therapy using a multigene real-time RT-PCR assay. Molecular diagnosis Ther 2006;10:41-7.