Original Article

Total Antioxidant Capacity, Salivary Catalase, and Superoxide Dismutase in Hashimoto's Thyroiditis Patients

Abstract

Hashimoto's thyroiditis (HT) is one of the common causes of hypothyroidism. Although various factors are involved in its development, recently the role of oxidative stress in its pathogenesis has been known. The present study aimed to investigate the level of total antioxidant capacity (TAC), catalase (CAT), and salivary superoxide dismutase (SOD) in patients with HT compared with the control group. The present case-control design included patients aged 18-80 years suffering from HT referred to the endocrine clinic. Eligible patients were selected by the available sampling method. Complete unstimulated saliva was collected under a rest state in a comfortable room between 10:00 AM and 12:00 AM and a checklist was used to collect data. The chi-square, t-test, and Mann-Whitney U tests were used for data analysis using SPSS 22 software. The mean age of the participants was 36.55±9.37 years (range: 20-56). The two groups were the same in terms of age and gender (P>0.05). The findings indicated that the difference in the means CAT between the two groups was 22.63 which was strongly and statistically significant (P<0.001). In this study, the level of TAC and SOD in Hashimoto's thyroid patients was decreased and the level of CAT was increased. These initial findings show that oxidative stress can be associated with Hashimoto's thyroid disease or the possibility of developing this disease increase.

1. Shukla SK, Singh G, Ahmad S, Pant P. Infections, genetic and environmental factors in pathogenesis of autoimmune thyroid diseases. Microb pathog. 2018;116:279-88.
2. San Yap P, Ali O, Truran P, Aspinall S. Thyrotoxicosis and thyroiditis. Surgery (Oxf). 2020;38:794-800.
3. Caturegli P, De Remigis A, Rose N. Hashimoto thyroiditis: clinical and diagnostic criteria. Autoimmun Rev. 2014;13:391-7.
4. Espenbetova M, Kuzmina N, Zubkov A, Akhmetova V, Zamanbekova Z, Krykpaeva A, et al. Epitopes specificity of antibodies to thyroid peroxidase in patients with Graves’ disease, Hashimoto’s thyroiditis and overlap-syndrome. J Clin Transl Endocrinol. 2022;27:100293.
5. Klubo-Gwiezdzinska J, Wartofsky L. Hashimoto thyroiditis: An evidence-based guide: Etiology, diagnosis and treatment. Pol Arch Intern Med. 2022;132:16222.
6. Phagoora J, Saini S, Raghunathan A, Reji J, Shabir A, Wanis M, et al. Hashimoto Thyroiditis-A Comprehensive Review. Physician J Med. 2023;2.
7. Farebrother J, Zimmermann MB, Andersson M. Excess iodine intake: sources, assessment, and effects on thyroid function. Ann N Y Acad Sci. 2019;1446:44-65.
8. da Silva GB, Yamauchi MA, Bagatini MD. Oxidative stress in Hashimoto’s thyroiditis: possible adjuvant therapies to attenuate deleterious effects. Mol Cell Biochem. 2023;478:949-66.
9. Popławska-Kita A. Markers of Both Autoimmune and Apoptotic Processes in Initiation and Progression of Hashimoto’s Thyroiditis. J Clin Med Images. 2020;4:1-6.
10. Ates I, Arikan MF, Altay M, Yilmaz FM, Yilmaz N, Berker D, et al. The effect of oxidative stress on the progression of Hashimoto’s thyroiditis. Arch Physiol Biochem. 2018;124s:351-6.
11. Ragusa F, Fallahi P, Elia G, Gonnella D, Paparo SR, Giusti C, et al. Hashimotos’ thyroiditis: Epidemiology, pathogenesis, clinic and therapy. Best Pract Res Clin Endocrinol Metab. 2019;33:101367.
12. Rydzewska M, Jaromin M, Pasierowska IE, Stożek K, Bossowski A. Role of the T and B lymphocytes in pathogenesis of autoimmune thyroid diseases. Thyroid Res. 2018;11:1-11.
13. Kochman J, Jakubczyk K, Bargiel P, Janda-Milczarek K. The influence of oxidative stress on thyroid diseases. Antioxidants. 2021;10:1442.
14. Carvalho DP, Dupuy C. Thyroid hormone biosynthesis and release. Mol Cell Endocrinol 2017;458:6-15.
15. Hack CT, Buck T, Bagnjuk K, Eubler K, Kunz L, Mayr D, et al. A Role for H2O2 and TRPM2 in the Induction of Cell Death: Studies in KGN Cells. Antioxidants. 2019;8:518.
16. Winterbourn CC. Biological chemistry of superoxide radicals. ChemTexts. 2020;6:7.
17. Ighodaro O, Akinloye O. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria J Med. 2018;54:287-93.
18. Ihnatowicz P, Drywień M, Wątor P, Wojsiat J. The importance of nutritional factors and dietary management of Hashimoto’s thyroiditis. Ann Agric Environ Med. 2020;27:184-93.
19. Cenesiz S. The role of oxidant and antioxidant parameters in the infectious diseases: A systematic literature review. Kafkas Univ Vet Fak Derg. 2020;26.
20. Rai G, Kumar A, Mahobiya P. The effect of radiation on thyroid gland. Int J Biol Res. 2018;3:217-22.
21. Morshed SA, Davies TF. Understanding thyroid cell stress. J Clin Endocrinol Metab. 2020;105:e66-e9.
22. Duntas LH, Brenta G. A renewed focus on the association between thyroid hormones and lipid metabolism. Front Endocrinol. 2018;9:511.
23. Żukowski P, Maciejczyk M, Waszkiel D. Sources of free radicals and oxidative stress in the oral cavity. Arch Oral Biol. 2018;92:8-17.
24. Jurczak A, Kościelniak D, Skalniak A, Papież M, Vyhouskaya P, Krzyściak W. The role of the saliva antioxidant barrier to reactive oxygen species with regard to caries development. Redox Rep. 2017;22:524-33.
25. Čižmárová B, Tomečková V, Hubková B, Hurajtová A, Ohlasová J, Birková A. Salivary redox homeostasis in human health and disease. Int J Mol Sci. 2022;23:10076.
26. Kumar J, Teoh SL, Das S, Mahakknaukrauh P. Oxidative stress in oral diseases: understanding its relation with other systemic diseases. Front Physiol. 2017;8:693.
27. Skutnik-Radziszewska A, Maciejczyk M, Fejfer K, Krahel J, Flisiak I, Kołodziej U, et al. Salivary Antioxidants and Oxidative Stress in Psoriatic Patients: Can Salivary Total Oxidant Status and Oxidative Status Index Be a Plaque Psoriasis Biomarker? Oxid Med Cell Longev 2020.
28. Żukowski P, Maciejczyk M, Matczuk J, Kurek K, Waszkiel D, Żendzian-Piotrowska M, et al. Effect of N-acetylcysteine on antioxidant defense, oxidative modification, and salivary gland function in a rat model of insulin resistance. Oxid Med Cell Longev. 2018;2018.
29. Maciejczyk M, Zalewska A, Ładny JR. Salivary antioxidant barrier, redox status, and oxidative damage to proteins and lipids in healthy children, adults, and the elderly. Oxid Med Cell Longev. 2019;2019.
30. Dąbrowska ZN, Bijowski K, Dąbrowska E, Pietruska M. Effect of oxidants and antioxidants on oral health. Med Ogólna Nauki Zdr. 2020;26:87.
31. Ates I, Yilmaz FM, Altay M, Yilmaz N, Berker D, Güler S. The relationship between oxidative stress and autoimmunity in Hashimoto's thyroiditis. Eur J Endocrinol. 2015;173:791-9.
32. Morawska K, Maciejczyk M, Popławski Ł, Popławska-Kita A, Krętowski A, Zalewska A. Enhanced salivary and general oxidative stress in Hashimoto’s thyroiditis women in euthyreosis. J Clin Med. 2020;9:2102.
33. Faam B, Ghadiri AA, Ghaffari MA, Totonchi M, Khorsandi L. Comparing Oxidative Stress Status Among Iranian Males and Females with Malignant and Non-malignant Thyroid Nodules. International journal of endocrinology and metabolism. 2021;19:e105669.
34. Olia BH, Khadem Ansari MH, Rasmi Y, Hasanzadeh-Moghadam M. Evaluation of malondialdehyde levels and total antioxidant capacity in patients with hyperthyroidism. J Res App Basic Med Sci. 2019;5:121-7.
35. Najafi Z, Zarban A, Chamani E, Honarbakhsh M, Sharifzadeh G. Comparison of biochemical and oxidative stress parameters in hypo and hyperthyroid rat models. Mod Care J. 2020;17.
36. YAZICI C, Keçeci T, Hatipoğlu D. The effect of coenzyme Q10 on blood plasma nitric oxide and total antioxidant capacity levels in hypothyroidism-induced rats. J Istanbul Vet Sci. 2021;5:19-26.
37. Lassoued S, Mseddi M, Mnif F, Abid M, Guermazi F, Masmoudi H, et al. A Comparative Study of the Oxidative Profile in Graves’ Disease, Hashimoto’s Thyroiditis, and Papillary Thyroid Cancer. Biol Trace Elem Res. 2010;138:107-15.
38. Naazeri S, Rostamian M, Hedayati M. Impact of thyroid dysfunction on antioxidant capacity, superoxide dismutase and catalase activity. Zahedan J Res Med Sci. 2014.
39. Komosinska-Vassev K, Olczyk K, Kucharz EJ, Marcisz C, Winsz-Szczotka K, Kotulska A. Free radical activity and antioxidant defense mechanisms in patients with hyperthyroidism due to Graves’ disease during therapy. Clin chim acta. 2000;300:107-17.
40. Bednarek J, Wysocki H, Sowinski J. Oxidation products and antioxidant markers in plasma of patients with Graves' disease and toxic multinodular goiter: effect of methimazole treatment. Free Radic Res. 2004;38:659-64.
41. Pasupathi P, Latha R. Free radical activity and antioxidant defense mechanisms in patients with hypothyroidism. Thyroid Sci. 2008;3:1-6.
42. Sahoo DK, Roy A, Bhanja S, Chainy GB. Hypothyroidism impairs antioxidant defence system and testicular physiology during development and maturation. Gen Comp Endocrinol. 2008;156:63-70.
Files
IssueVol 61 No 12 (2023) QRcode
SectionOriginal Article(s)
DOI https://doi.org/10.18502/acta.v61i12.16368
Keywords
Hashimoto's thyroiditis Antioxidant Superoxide dismutase Oxidative stress Saliva

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Nosratzehi S, Nosratzehi M, Alijani E, Payandeh A, Nosratzehi T, Charvaei A. Total Antioxidant Capacity, Salivary Catalase, and Superoxide Dismutase in Hashimoto’s Thyroiditis Patients. Acta Med Iran. 2024;61(12):722-727.