Original Articles

Gender Determination Using the Hyoid Bone: A Discriminant Function Analysis

Abstract

The hyoid bone, with its unique morphology, offers a valuable alternative for gender determination in cases where traditional indicators like the pelvis and skull are compromised. This study aimed to investigate the relationship between gender and hyoid bone dimensions using CT scan images. This retrospective study analyzed 120 neck CT scans to investigate the relationship between gender and hyoid bone dimensions. RadiAnt DICOM Viewer software was used for evaluation. Measurements included width, length, and proximal and distal widths of the greater horns of the hyoid bones on both sides. Statistical analysis employed a range of techniques, including independent t-tests, paired t-tests, Spearman's rank correlation, and discriminant analysis, with a significance level of 0.05. This retrospective study analyzed 120 neck CT scans from 60 women (mean age 48.92±13.53 years) and 60 men (mean age 53.97±17.05 years). In examining the dimensions of the hyoid bone, all variables except the distal width of the greater horn on both sides (RDD, LDD) were found to have statistically significant differences between the two sexes. The classification of individuals by sex was correctly determined in 85% of cases using discriminant function analysis. Stepwise analysis identified hyoid body length and width as the most significant predictors, demonstrating 81.7% and 85% accuracy in classifying men and women, respectively. In our study population, measurements of body length and width at the hyoid bone proved highly reliable indicators of sex differentiation.

1. Franklin D, Cardini A, Flavel A, Marks MK. Morphometric analysis of pelvic sexual dimorphism in a contemporary Western Australian population. Int J Legal Med 2014;128:861-72.
2. Ozer I, Katayama K, Sağir M, Güleç E. Sex determination using the scapula in medieval skeletons from East Anatolia. Coll Antropol 2006;30:415-19.
3. Iscan MY, Steyn M. The human skeleton in forensic medicine. Springfield (IL): Charles C Thomas; 2013.
4. Torimitsu S, Makino Y, Saitoh H, Ishii N, Yajima D, Inokuchi G, et al. Determination of sex on the basis of hyoid bone measurements in a Japanese population using multidetector computed tomography. Int J Legal Med 2018;132:907-14.
5. Khokhlov VD. Injuries to the hyoid bone and laryngeal cartilages: effectiveness of different methods of medico-legal investigation. Forensic Sci Int 1997;88:173-83.
6. Maxeiner H. Hidden laryngeal injuries in homicidal strangulation: how to detect and interpret these findings. J Forensic Sci 1998;43:784-91.
7. Jiménez-Brobeil SA, Al Oumaoui I, Fernández De La Gala J, Laffranchi Z, Roca MG. An example of a severe neck injury with survival seen in a Bronze Age burial. Int J Osteoarchaeol 2011;21:247-52.
8. Green H, Curnoe D. Sexual dimorphism in southeast Asian crania: a geometric morphometric approach. Homo 2009;60:517-34.
9. Lieberman DE, McCarthy RC, Hiiemae KM, Palmer JB. Ontogeny of postnatal hyoid and larynx descent in humans. Arch Oral Biol 2001;46:117-28.
10. Köse E, Göller Bulut D. The use of hyoid bone dimensions in age and sex estimation in a Turkish population: a cone-beam computed tomography study. Folia Morphol 2022;81:183-9.
11. Ito K, Ando S, Akiba N, Watanabe Y, Okuyama Y, Moriguchi H, et al. Morphological study of the human hyoid bone with three-dimensional CT images: gender difference and age-related changes. Okajimas Folia Anat Jpn 2012;89:83-92.
12. Priya K, Kumari GA. Sexual dimorphism with the shape of hyoid bone. Indian J Clin Anat Physiol 2016;3:351-56.
13. Logar CJ, Peckmann TR, Meek S, Walls SG. Determination of sex from the hyoid bone in a contemporary White population. J Forensic Leg Med 2016;39:34-41.
14. Fakhry N, Puymerail L, Michel J, Santini L, Lebreton-Chakour C, Robert D, et al. Analysis of hyoid bone using 3D geometric morphometrics: an anatomical study and discussion of potential clinical implications. Dysphagia 2013;28:435-45.
15. D'Anastasio R, Viciano J, Di Nicola M, Cesana DT, Sciubba M, Del Cimmuto M, et al. Estimation of sex from the hyoid body in skeletal individuals from archaeological sites. Homo 2014;65:311-21.
16. Urbanová P, Hejna P, Zátopková L, Šafr M. The morphology of human hyoid bone in relation to sex, age and body proportions. Homo 2013;64:190-204.
17. Urbanová P, Hejna P, Zátopková L, Šafr M. What is the appropriate approach in sex determination of hyoid bones? J Forensic Leg Med 2013;20:996-1003.
18. Fisher E, Austin D, Werner HM, Chuang YJ, Bersu E, Vorperian HK. Hyoid bone fusion and bone density across the lifespan: prediction of age and sex. Forensic Sci Med Pathol 2016;12:146-57.
19. Reesink E, Van Immerseel A, Brand R, Bruintjes TD. Sexual dimorphism of the hyoid bone? Int J Osteoarchaeol 1999;9:357-60.
20. Savitha V, Sunitha R, Sharada B. Morphometric determination of sex of hyoid bone. Natl J Clin Anat 2019;8:112-16.
21. Balseven-Odabasi A, Yalcinozan E, Keten A, Akçan R, Tumer AR, Onan A, et al. Age and sex estimation by metric measurements and fusion of hyoid bone in a Turkish population. J Forensic Leg Med 2013;20:496-501.
22. Amgain K, Adhikary S, Thapa P, Sharma KR, Neupane S. Morphometric study of hyoid bone and its forensic implication. EJMS 2020;2:69-75.
Files
IssueVol 63 No 6 (2025) QRcode
SectionOriginal Articles
DOI https://doi.org/10.18502/acta.v63i6.20678
Keywords
Hyoid bone Gender determination Computed tomography

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Safaee A, Bagherpour A, Ashoori M, Jamali Paghaleh Z. Gender Determination Using the Hyoid Bone: A Discriminant Function Analysis. Acta Med Iran. 2025;63(6):359-364.