Differential Expression of Human Homeodomain TGIFLX in Brain Tumor Cell Lines

  • Reza Raoofian Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
  • Mohammad Reza Noori-Daloii Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
  • Samira Saee-Rad Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
  • Mohammad Hossein Modarresi Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
  • Seyed Hamid Ghaffari Hematology, Oncology and BMT Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
  • Majid Mojarrad Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
  • Farid Abolhasani Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
  • Mansour Heidari Mail Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran. AND Stem Cell Preparation Unit, Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran.
Glioblastoma, Homeobox gene, Nuclear localization, TGIFLX


Glioblastoma is the most common and the most lethal primary brain cancer. This malignancy is highly locally invasive, rarely metastatic and resistant to current therapies. Little is known about the distinct molecular biology of glioblastoma multiforme (GBM) in terms of initiation and progression. So far, several molecular mechanisms have been suggested to implicate in GBM development. Homeodomain (HD) transcription factors play central roles in the expression of genomic information in all known eukaryotes. The TGIFX homeobox gene was originally discovered in human adult testes. Our previous study showed implications of TGIFLX in prostate cancer and azoospermia, although the molecular mechanism by which TGIFLX acts is unknown. Moreover, studies reported that HD proteins are involved in normal and abnormal brain developments. We examined the expression pattern of TGIFLX in different human brain tumor cell lines including U87MG, A172, Daoy and 1321N1. Interestingly, real time RT-PCR and western blot analysis revealed a high level of TGIFLX expression in A172 cells but not in the other cell lines. We subsequently cloned the entire coding sequence of TGIFLX gene into the pEGFP-N1 vector, eukaryotic expression vector encoding eGFP, and transfected into the U-87 MG cell line. The TGIFLX-GFP expression was confirmed by real time RT-PCR and UV-microscopic analysis. Upon transfection into U87 cells, fusion protein TGIFLX-GFP was found to locate mainly in the nucleus. This is the first report to determine the nuclear localization of TGIFLX and evaluation of its expression level between different brain tumor cell lines. Our data also suggest that TGIFLX gene dysregulation could be involved in the pathogenesis of some human brain tumors.


Pollice S, Morlino G, Capuano M, Scarabino T. Brain Tumors. Imaging Gliomas After Treatment. Milan: Springer; 2012.

Adamson C, Kanu OO, Mehta AI, Di C, Lin N, Mattox AK, Bigner DD. Glioblastoma multiforme: a review of where we have been and where we are going 2009;18(8):1061-83.

Behin A, Hoang-Xuan K, Carpentier AF, Delattre JY. Primary brain tumours in adults. The Lancet 2003;361(9354):323-31.

Belden CJ, Valdes PA, Ran C, Pastel DA, Harris BT, Fadul CE, Israel MA, Paulsen K, Roberts DW. Genetics of glioblastoma: a window into its imaging and histopathologic variability. Radiographics 2011;31(6):1717-40.

Giese A, Bjerkvig R, Berens ME, Westphal M. Cost of migration: invasion of malignant gliomas and implications for treatment. J Clin Oncol 2003;21(8):1624-36.

Hoelzinger DB, Mariani L, Weis J, Woyke T, Berens TJ, McDonough WS, Sloan A, Coons SW, Berens ME. Gene expression profile of glioblastoma multiforme invasive phenotype points to new therapeutic targets. Neoplasia 2005;7(1):7-16.

Gong X, Schwartz PH, Linskey ME, Bota DA. Neural stem/progenitors and glioma stem-like cells have differential sensitivity to chemotherapy. Neurology 2011;76(13):1126-34.

Lukiw WJ, Culicchia F. Genetic Signaling in Glioblastoma Multiforme (GBM): A Current Overview. Neurochemical Mechanisms in Disease New York: Springer; 2011.

Alelú-Paz R, Ashour N, González-Corpas A, Ropero S. DNA Methylation, Histone Modifications, and Signal Transduction Pathways: A Close Relationship in Malignant Gliomas Pathophysiology. J Signal Transduct 2012;2012:956958.

Brennan C, Momota H, Hambardzumyan D, Ozawa T, Tandon A, Pedraza A, Holland E. Glioblastoma subclasses can be defined by activity among signal transduction pathways and associated genomic alterations. PLoS One 2009;4(11):e7752.

Dubuc AM, Northcott PA, Mack S, Witt H, Pfister S, Taylor MD. The genetics of pediatric brain tumors. Curr Neurolo Neurosci Rep 2010;10(3):215-23.

Ichimura K, Ohgaki H, Kleihues P, Collins VP. Molecular pathogenesis of astrocytic tumours. J Neurooncol 2004;70(2):137-60.

Kanu OO, Hughes B, Di C, Lin N, Fu J, Bigner DD, Yan H, Adamson C. Glioblastoma multiforme oncogenomics and signaling pathways. Clin Med Oncol 2009;3:39-52.

Kumar HR, Zhong X, Sandoval JA, Hickey RJ, Malkas LH. Applications of emerging molecular technologies in glioblastoma multiforme. Expert Rev Neurother 2008;8(10):1497-506.

Mischel PS, Cloughesy TF, Nelson SF. DNA-microarray analysis of brain cancer: molecular classification for therapy. Nat Rev Neurosci 2004;5(10):782-92.

Shirahata M, Iwao-Koizumi K, Saito S, Ueno N, Oda M, Hashimoto N, Takahashi JA, Kato K. Gene Expression- Based Molecular Diagnostic System for Malignant Gliomas Is Superior to Histological Diagnosis. Clin Cancer Res 2007;13(24):7341-56.

Kanu OO, Mehta A, Di C, Lin N, Bortoff K, Bigner DD, Yan H, Adamson DC. Glioblastoma multiforme: a review of therapeutic targets. Expert Opin Ther Targets 2009;13(6):701-18.

Samuel S, Naora H. Homeobox gene expression in cancer: insights from developmental regulation and deregulation. Eur J Cancer 2005;41(16):2428-37.

Larroux C, Luke GN, Koopman P, Rokhsar DS, Shimeld SM, Degnan BM. Genesis and Expansion of Metazoan Transcription Factor Gene Classes. Mol Biol Evol 2008;25(5):980–96.

Zakany J, Duboule D. The role of Hox genes during vertebrate limb development. Curr Opin Genet Dev 2007;17(4):359-66.

Banerjee-Basu S, Baxevanis AD. Molecular evolution of the homeodomain family of transcription factors. Nucleic Acids Res 2001;29(15):3258-69.

Castelli-Gair. Implications of the spatial and temporal regulation of Hox genes on development and evolution. Int J Dev Biol 1998;42(3):437-44.

Morgan BA. Hox genes and embryonic development. Poult Sci 1997;76(1):96-9104.

Holland PWH, Booth HAF, Bruford EA. Classification and nomenclature of all human homeobox genes. BMC Biol 2007;5:47.

Gehring WJ, Qian YQ, Billeter M, Furukubo-Tokunaga K, Schier AF, Resendez-Perez D, Affolter M, Otting G, Wüthrich K. Homeodomain-DNA recognition. Cell 1994;78(2):211-23.

Mukherjee K, Burglin TR. Comprehensive analysis of animal TALE homeobox genes: new conserved motifs and cases of accelerated evolution. J Mol Evol 2007;65(2):137-53.

Wang X, Zhang J. Rapid evolution of mammalian Xlinked testis-expressed homeobox genes. Genetics 2004;167(2):879-88.

Blanco-Arias P, Sargent CA, Affara NA. The humanspecific Yp11.2/Xq21.3 homology block encodes a potentially functional testis-specific TGIF-like retroposon. Mamm Genome 2002;13(8):463-8.

Bertolino E, Reimund B, Wildt-Perinic D, Clerc RG. A novel homeobox protein which recognizes a TGT core and functionally interferes with a retinoid-responsive motif. J Biol Chem 1995;270(52):31178-88.

Burglin TR. Analysis of TALE superclass homeobox genes (MEIS, PBC, KNOX, Iroquois, TGIF) reveals a novel domain conserved between plants and animals. Nucleic Acids Res 1997;25(21):4173-80.

Mc Kusick VA. Transforming growth factor-beta-induced factor 2-like, X-linked; tgif2lx. Johns Hopkins University; 2002 [updated 2002; cited 2007 Feb 14].

Ousati Ashtiani Z, Ayati M, Modarresi MH, Raoofian R, Sabah Goulian B, Greene WK, Heidari M. Association of TGIFLX/Y mRNA expression with prostate cancer. Med Oncol 2009;26(1):73-7.

Aarabi M, Ousati-Ashtiani Z, Nazarian A, Modarressi MH, Heidari M. Association of TGIFLX/Y mRNA expression with azoospermia in infertile men. Mol Reprod Dev 2008;75(12):1761-6.

Knepper JL, James AC, Ming JE. TGIF, a gene associated with human brain defects, regulates neuronal development. Dev Dyn 2006;235(6):1482-90.

Boyl PP, Signore M, Annino A, Barbera JP, Acampora D, Simeone A. Otx genes in the development and evolution of the vertebrate brain. Int J Dev Neurosci 2001;19(4):353-63.

Peukert D, Weber S, Lumsden A, Scholpp S. Lhx2 and Lhx9 determine neuronal differentiation and compartition in the caudal forebrain by regulating Wnt signaling. PLoS Biol 2011;9(12):e10012218.

Wigle J, Eisenstat D. Homeobox genes in vertebrate forebrain development and disease. Clin Genet 2008;73(3):212-26.

Saffari M, Dinehkabodi OS, Ghaffari SH, Modarressi MH, Mansouri F, Heidari M. Identification of novel p53 target genes by cDNA AFLP in glioblastoma cells. Cancer Lett 2008;273(2):316-22.

Ghassemi R, Heidari M, Mansouri F. Expression and Purification of the Human Homeodomain TGIFLX. J Sciences 2007;18(1):13-8.

Heidari M, Rice KL, Phillips JK, Kees UR, Greene WK. The nuclear oncoprotein TLX1/HOX11 associates with pericentromeric satellite 2 DNA in leukemic T-cells. Leukemia 2006;20(2):304-12.

Grier DG, Thompson A, Kwasniewska A, McGonigle GJ,mHalliday HL, Lappin TR. The pathophysiology of HOX genes and their role in cancer. J Pathol 2005;205(2):154-71.

Abate-Shen C. Deregulated homeobox gene expression in cancer: cause or consequence? Nat Rev Cancer 2002;2(10):777-85.

Abe M, Hamada J-I, Takahashi O, Takahashi Y, Tada M, Miyamoto M, Morikawa T, Kondo S, Moriuchi T. Disordered expression of HOX genes in human non-small cell lung cancer. Oncol Rep 2006;15(4):797-802.

Argiropoulos B, Humphries RK. Hox genes in hematopoiesis and leukemogenesis. Oncogene 2007;26(47):6766-76.

Cillo C, Cantile M, Faiella A, Boncinelli E. Homeoboxm genes in normal and malignant cells. J Cell Physiol 2001;188(2):161-9.

Vider BZ, Zimber A, Hirsch D, Estlein D, Chastre E, Prevot S, Gespach C, Yaniv A, Gazit A. Human colorectal carcinogenesis is associated with deregulation of homeobox gene expression. Biochem Biophys Res Commun 1997;232(3):742-8.

Di Vinci A, Casciano I, Marasco E, Banelli B, Ravetti GL, Borzì L, Brigati C, Forlani A, Dorcaratto A, Allemanni G, ,Zona G, Spaziante R,Gohlke H, Gardin G, Merlo DF, Mantovani V, Romani M. Quantitative methylation analysis of HOXA3, 7, 9, and 10 genes in glioma: association with tumor WHO grade and clinical outcome. J Cancer Res Clin Oncol 2012;138(1):35-47.

Tabuse M, Ohta S, Ohashi Y, Fukaya R, Misawa A, Yoshida K, Kawase T, Saya H, Thirant C, Chneiweiss H, Matsuzaki Y, Okano H,Kawakami Y, Toda M. Functional analysis of HOXD9 in human gliomas and glioma cancer stem cells. Mol Cancer 2011;10(1):1-14.

Abdel-Fattah R, Xiao A, Bomgardner D, Pease CS, Lopes MB, Hussaini IM. Differential expression of HOX genes in neoplastic and non-neoplastic human astrocytes. J Pathol 2006;209(1):15–24.

Barber BA, Rastegar M. Epigenetic control of Hox genes during neurogenesis, development, and disease. Ann Anat 2010;192(5):261-74.

Vladimirova V, Mikeska T, Waha A, Soerensen N, Xu J, Reynolds PC, P ietsch T. Aberrant methylation and reduced expression of LHX9 in malignant gliomas of childhood. Neoplasia 2009;11(19568415):700-11.

Eklund EA. The role of HOX genes in malignant myeloid disease. Curr Opin Hematol 2007;14(2):85-9.

Domon-Dell C, Schneider A, Moucadel V, Guerin E, Guenot D, Aguillon S, Duluc I, Martin E, Iovanna J, Launay JF, Duclos B, Chenard MP, Meyer C, Oudet P, Kedinger M, Gaub MP, Freund JN. Cdx1 homeobox gene during human colon cancer progression. Oncogene 2003;22(39):7913-21.

Salari K, Spulak ME, Cuff J, Forster AD, Giacomini CP, Huang S, Ko ME, Lin AY, van de Rijn M, Pollack JR. CDX2 is an amplified lineage-survival oncogene in colorectal cancer. Proc Natl Acad Sci USA 2012;109(46):E3196-205.

Nelson HH, Marsit CJ, Christensen BC, Houseman EA, Kontic M, Wiemels JL, Karagas MR, Wrensch MR, Zheng S, Wiencke JK,Kelsey KT. Key epigenetic changes associated with lung cancer development: Results from dense methylation array profiling. Epigenetics 2012;7(6):0-1.

Nguyen Kovochich A, Arensman M, Lay AR, Rao NP, Donahue T, Li X, French SW, Dawson DW. HOXB7 promotes invasion and predicts survival in pancreatic adenocarcinoma. Cancer 2013;119(3):529-39.

Giard DJ, Aaronson SA, Todaro GJ, Arnstein P, Kersey JH, Dosik H, Parks WP. In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors. J Natl Cancer Inst 1973;51(5):1417-23.

PontÉN JAN, Macintyre EH. Long term culture of normal and neoplastic human glia.. Acta Pathol Microbiol Scand 1968;74(4):465-86.

Jacobsen P, Jenkyn D, Papadimitriou J. Establishment of a human medulloblastoma cell line and its heterotransplantation into nude mice. J Neuropathol Exp Neurol 1985;44(5):472-85.

How to Cite
Raoofian R, Noori-Daloii MR, Saee-Rad S, Modarresi MH, Ghaffari SH, Mojarrad M, Abolhasani F, Heidari M. Differential Expression of Human Homeodomain TGIFLX in Brain Tumor Cell Lines. Acta Med Iran. 51(12):834-841.