Original Article

Expression of Efflux Pumps and Fatty Acid Activator One Genes in Azole Resistant Candida Glabrata Isolated From Immunocompromised Patients

Abstract

Acquired azole resistance in opportunistic fungi causes severe clinical problems in immunosuppressed individuals. This study investigated the molecular mechanisms of azole resistance in clinical isolates of Candida glabrata. Six unmatched strains were obtained from an epidemiological survey of candidiasis in immunocompromised hosts that included azole and amphotericin B susceptible and azole resistant clinical isolates. Candida glabrata CBS 138 was used as reference strain. Antifungal susceptibility testing of clinical isolates was evaluated using Clinical and Laboratory Standards Institute (CLSI) methods. Complementary DNA-amplified fragment length polymorphism (cDNA-AFLP) technology, semi-quantitative RT-PCR, and sequencing were employed for identification of potential genes involved in azole resistance. Candida glabrata Candida drug resistance 1 (CgCDR1) and Candida glabrata Candida drug resistance 2 (CgCDR2) genes, which encode for multidrug transporters, were found to be upregulated in azole-resistant isolates (≥2-fold). Fatty acid activator 1 (FAA1) gene, belonging to Acyl-CoA synthetases, showed expression in resistant isolates ≥2-fold that of the susceptible isolates and the reference strain. This study revealed overexpression of the CgCDR1, CgCDR2, and FAA1 genes affecting biological pathways, small hydrophobic compounds transport, and lipid metabolism in the resistant clinical C.glabrata isolates.

Pfaller MA, Diekema DJ. Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev 2007;20(1):133-63.

Horn DL, Neofytos D, Anaissie EJ, Fishman JA, Steinbach WJ, Olyaei AJ, Marr KA, Pfaller MA, Chang CH, Webster KM. Epidemiology and outcomes of candidemia in 2019 patients: data from the prospective antifungal therapy alliance registry. Clin Infect Dis 2009;48(12):1695-703.

Sardi JC, Scorzoni L, Bernardi T, Fusco-Almeida AM, Mendes Giannini MJ. Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. J Med Microbiol 2013;62(Pt 1):10-24.

Ruhnke M. Epidemiology of Candida albicans infections and role of non-Candida-albicans yeasts. Curr Drug Targets 2006;7(4):495-504.

Bassetti M, Merelli M, Righi E, Diaz-Martin A, Rosello EM, Luzzati R, Parra A, Trecarichi EM, Sanguinetti M, Posteraro B, Garnacho-Montero J, Sartor A, Rello J, Tumbarello M. Epidemiology, species distribution, antifungal susceptibility, and outcome of candidemia across five sites in Italy and Spain. J Clin Microbiol 2013;51(12):4167-72.

Silva S, Negri M, Henriques M, Oliveira R, Williams DW, Azeredo J. Candida glabrata, Candida parapsilosis and Candida tropicalis: biology, epidemiology, pathogenicity and antifungal resistance. FEMS Microbiol Rev 2012;36(2):288-305.

Marichal P, Vanden Bossche H, Odds FC, Nobels G, Warnock DW, Timmerman V, Van Broeckhoven C, Fay S, Mose-Larsen P. Molecular biological characterization of an azole-resistant Candida glabrata isolate. Antimicrob Agents Chemother 1997;41(10):2229-37.

Espinel-Ingroff A. Mechanisms of resistance to antifungal agents: yeasts and filamentous fungi. Rev Iberoam Micol 2008;25(2):101-6.

Kanafani ZA, Perfect JR. Antimicrobial resistance: resistance to antifungal agents: mechanisms and clinical impact. Clin Infect Dis 2008;46(1):120-8.

Sanguinetti M, Posteraro B, Fiori B, Ranno S, Torelli R, Fadda G. Mechanisms of azole resistance in clinical isolates of Candida glabrata collected during a hospital survey of antifungal resistance. Antimicrob Agents Chemother 2005;49(2):668-79.

Sanglard D, Ischer F, Bille J. Role of ATP-binding-cassette transporter genes in high-frequency acquisition of resistance to azole antifungals in Candida glabrata. Antimicrob Agents Chemother 2001;45(4):1174-83.

Prasad R, Gaur NA, Gaur M, Komath SS. Efflux pumps in drug resistance of Candida. Infect Disord Drug Targets 2006;6(2):69-83.

Torelli R, Posteraro B, Ferrari S, La Sorda M, Fadda G, Sanglard D, Sanguinetti M. The ATP-binding cassette transporter-encoding gene CgSNQ2 is contributing to the CgPDR1-dependent azole resistance of Candida glabrata. Mol Microbiol 2008;68(1):186-201.

Ferrari S, Sanguinetti M, Torelli R, Posteraro B, Sanglard D. Contribution of CgPDR1-regulated genes in enhanced virulence of azole-resistant Candida glabrata. PLoS One 2011;6(3):e17589.

Tsai HF, Krol AA, Sarti KE, Bennett JE. Candida glabrata PDR1, a transcriptional regulator of a pleiotropic drug resistance network, mediates azole resistance in clinical isolates and petite mutants. Antimicrob Agents Chemother 2006;50(4):1384-92.

Berila N, Subik J. Molecular analysis of Candida glabrata clinical isolates. Mycopathologia 2010;170(2):99-105.

Vermitsky JP, Earhart KD, Smith WL, Homayouni R, Edlind TD, Rogers PD. Pdr1 regulates multidrug resistance in Candida glabrata: gene disruption and genome-wide expression studies. Mol Microbiol 2006;61(3):704-22.

Caudle KE, Barker KS, Wiederhold NP, Xu L, Homayouni R, Rogers PD. Genomewide expression profile analysis of the Candida glabrata Pdr1 regulon. Eukaryot Cell 2011;10(3):373-83.

Berila N, Borecka S, Dzugasova V, Bojnansky J, Subik J. Mutations in the CgPDR1 and CgERG11 genes in azole-resistant Candida glabrata clinical isolates from Slovakia. Int J Antimicrob Agents 2009;33(6):574-8.

Farahyar S, Zaini F, Kordbacheh P, Rezaie S, Safara M, Raoofian R, Heidari M. Overexpression of aldo-keto-reductase in azole-resistant clinical isolates of Candida glabrata determined by cDNA-AFLP. Daru 2013;21(1):1.

Reijans M, Lascaris R, Groeneger AO, Wittenberg A, Wesselink E, van Oeveren J, de Wit E, Boorsma A, Voetdijk B, van der Spek H, Grivell LA, Simons G. Quantitative comparison of cDNA-AFLP, microarrays, and GeneChip expression data in Saccharomyces cerevisiae. Genomics 2003;82(6):606-18.

Jayaraman A, Puranik S, Rai NK, Vidapu S, Sahu PP, Lata C, Prasad M. cDNA-AFLP analysis reveals differential gene expression in response to salt stress in foxtail millet (Setaria italica L.). Mol Biotechnol 2008;40(3):241-51.

Saffari M, Dinehkabodi OS, Ghaffari SH, Modarressi MH, Mansouri F, Heidari M. Identification of novel p53 target genes by cDNA AFLP in glioblastoma cells. Cancer Lett 2009;273(2):316-22.

CLSI. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeast; Approved Standard – Third Edition. CLSI document M27-A3. Wayne, PA. Clinical and Laboratory Standards Institute 2008.

Levterova V, Panaiotov S, Brankova N, Tankova K. Typing of genetic markers involved in stress response by fluorescent cDNA-amplified fragment length polymorphism technique. Molecular biotechnology 2010;45(1):34-8.

Lockhart SR, Messer SA, Gherna M, Bishop JA, Merz WG, Pfaller MA, Diekema DJ. Identification of Candida nivariensis and Candida bracarensis in a large global collection of Candida glabrata isolates: comparison to the literature. J Clin Microbiol 2009;47(4):1216-7.

Warren TA, McTaggart L, Richardson SE, Zhang SX. Candida bracarensis bloodstream infection in an immunocompromised patient. J Clin Microbiol;48(12):4677-9.

Richardson M, Lass-Florl C. Changing epidemiology of systemic fungal infections. Clin Microbiol Infect 2008;14 Suppl 4:5-24.

Coleman JJ, Mylonakis E. Efflux in fungi: la piece de resistance. PLoS Pathog 2009;5(6):e1000486.

Morschhauser J. Regulation of multidrug resistance in pathogenic fungi. Fungal Genet Biol 2010;47(2):94-106.

Lamping E, Ranchod A, Nakamura K, Tyndall JD, Niimi K, Holmes AR, Niimi M, Cannon RD. Abc1p is a multidrug efflux transporter that tips the balance in favor of innate azole resistance in Candida krusei. Antimicrob Agents Chemother 2009;53(2):354-69.

Akins RA. An update on antifungal targets and mechanisms of resistance in Candida albicans. Med Mycol 2005;43(4):285-318.

Tavakoli M, Zaini F, Kordbacheh M, Safara M, Raoofian R, Heidari M. Upregulation of the ERG11 gene in Candida krusei by azoles. Daru 2010;18(4):276-80.

Li H, Melton EM, Quackenbush S, DiRusso CC, Black PN. Mechanistic studies of the long chain acyl-CoA synthetase Faa1p from Saccharomyces cerevisiae. Biochim Biophys Acta 2007;1771(9):1246-53.

Black PN, DiRusso CC. Yeast acyl-CoA synthetases at the crossroads of fatty acid metabolism and regulation. Biochim Biophys Acta 2007;1771(3):286-98.

Scharnewski M, Pongdontri P, Mora G, Hoppert M, Fulda M. Mutants of Saccharomyces cerevisiae deficient in acyl-CoA synthetases secrete fatty acids due to interrupted fatty acid recycling. FEBS J 2008;275(11):2765-78.

Files
IssueVol 54, No 7 (2016) QRcode
SectionOriginal Article(s)
Keywords
Fatty acid activator one cDNA-AFLP method Candida glabrata Candida azole resistance CgCDR1 CgCDR2

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Farahyar S, Zaini F, Kordbacheh P, Rezaie S, Falahati M, Safara M, Raoofian R, Hatami K, Mohebbi M, Heidari M. Expression of Efflux Pumps and Fatty Acid Activator One Genes in Azole Resistant Candida Glabrata Isolated From Immunocompromised Patients. Acta Med Iran. 2016;54(7):458-464.