Deficiency in Mental Rotation of Upper and Lower-Limbs in Patients With Multiple Sclerosis and Its Relation With Cognitive Functions

  • Mahdieh Azin Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
  • Nasser Zangiabadi Mail Kerman Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
  • Yousef Moghadas Tabrizi Department of Health and Sports Medicine, School of Physical Education, Tehran University of Medical Sciences, Tehran, Iran.
  • Farhad Iranmanesh Neurology Research Center, Kerman University of Medical Sciences, Kerman, Iran.
  • Mohammad Reza Baneshi Modeling in Health Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran.
Multiple sclerosis, Mental rotation, Motor imagery, Cognitive function


Mental rotation is a cognitive motor process which was impaired in different neurologic disorders. We investigated whether there were deficits in response pattern, reaction time and response accuracy rate of mental rotation in multiple sclerosis (MS) patients compared to healthy subjects and whether cognitive dysfunctions in MS patients were correlated with mental rotation deficits. Moreover, we showed whether there was a difference between upper and lower-limbs mental rotation in MS patients. Thirty-five MS patients and 25 healthy subjects performed hand mental rotation (HMR) and foot mental rotation (FMR) tasks. Visual information processing speed, spatial learning and memory ability, and visuospatial processing were assessed by Symbol Digit Modalities Test (SDMT), Brief Visuospatial Memory Test–Revised (BVMT-R), and Judgment of Line Orientation Test (JLO) respectively in MS patients. Reaction time for both hand and foot stimuli increased, and response accuracy rate for hand stimuli decreased in MS patients compared to healthy subjects, but response pattern of mental rotation in MS patients persisted. Similar to healthy subjects, MS patients performed upper-limbs mental rotation more easily than a lower-limbs mental rotation with more speed and response accuracy rate. Reaction time and response accuracy rate were correlated with the mentioned cognitive functions. MS patients made use of the correct response pattern for problem solving of increasing orientation from upright stimuli. Reaction time and response accuracy rate altered in these patients and this alteration might occur along with impairment in motor planning. Subjects’ better responding to hand stimuli was due to more familiarity with hand stimuli. The correlation of mental rotation ability with cognitive functions indicates the possible role of cognitive functions in mental rotation.


Decety, J., Do imagined and executed actions share the same neural substrate? Cognitive brain research, 1996. 3(2): p. 87-93.

Crammond, D.J., Motor imagery: never in your wildest dream. Trends in neurosciences, 1997. 20(2): p. 54-57.

Jeannerod, M. and V. Frak, Mental imaging of motor activity in humans. Curr Opin Neurobiol, 1999. 9(6): p. 735-9.

Madan, C.R. and A. Singhal, Motor imagery and higher-level cognition: four hurdles before research can sprint forward. Cognitive processing, 2012. 13(3): p. 211-229.

Kosslyn, S.M., Seeing and imagining in the cerebral hemispheres: a computational approach. Psychol Rev, 1987. 94(2): p. 148-75.

Shepard, R. and L. Cooper, Mental images and their transformations. 1982, MIT Press, Cambridge, MA.

Decety, J. and J. Grezes, Neural mechanisms subserving the perception of human actions. Trends Cogn Sci, 1999. 3(5): p. 172-178.

Parsons, L.M., Temporal and kinematic properties of motor behavior reflected in mentally simulated action. J Exp Psychol Hum Percept Perform, 1994. 20(4): p. 709-30.

Kosslyn, S.M., et al., Mental rotation of objects versus hands: neural mechanisms revealed by positron emission tomography. Psychophysiology, 1998. 35(2): p. 151-161.

Parsons, L.M., Imagined spatial transformations of one's hands and feet. Cogn Psychol, 1987. 19(2): p. 178-241.

Dominey, P., et al., Motor imagery of a lateralized sequential task is asymmetrically slowed in hemi-Parkinson's patients. Neuropsychologia, 1995. 33(6): p. 727-41.

Duncombe, M.E., et al., Parkinsonian patients without dementia or depression do not suffer from bradyphrenia as indexed by performance in mental rotation tasks with and without advance information. Neuropsychologia, 1994. 32(11): p. 1383-96.

Mutsaarts, M., B. Steenbergen, and H. Bekkering, Impaired motor imagery in right hemiparetic cerebral palsy. Neuropsychologia, 2007. 45(4): p. 853-9.

Steenbergen, B., M. van Nimwegen, and C. Craje, Solving a mental rotation task in congenital hemiparesis: motor imagery versus visual imagery. Neuropsychologia, 2007. 45(14): p. 3324-8.

Noseworthy, J.H., et al., Multiple sclerosis. N Engl J Med, 2000. 343(13): p. 938-52.

Lublin, F.D. and A.E. Miller, multiple sclerosis and other inflammatory demyelinating diseases of the central nervous system, in Neurology in clinical practice: The neurological disorders, Walter.G.Bradley, et al., Editors. 2012, Butterworth-Heinemann Elsevier. p. 1583-1609.

Heremans, E., et al., The relation between cognitive and motor dysfunction and motor imagery ability in patients with multiple sclerosis. Multiple Sclerosis Journal, 2012. 18(9): p. 1303-1309.

Tabrizi, Y.M., et al., Abnormalities of Motor Imagery and Relationship With Depressive Symptoms in Mildly Disabling Relapsing-Remitting Multiple Sclerosis. Journal of Neurologic Physical Therapy, 2014. 38(2): p. 111-118.

Polman, C.H., et al., Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol, 2011. 69(2): p. 292-302.

Kurtzke, J.F., Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology, 1983. 33(11): p. 1444-52.

Folstein, M.F., S.E. Folstein, and P.R. McHugh, "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res, 1975. 12(3): p. 189-98.

Oldfield, R.C., The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 1971. 9(1): p. 97-113.

Krupp, L.B., et al., The fatigue severity scale. Application to patients with multiple sclerosis and systemic lupus erythematosus. Arch Neurol, 1989. 46(10): p. 1121-3.

Ghassemzadeh, H., et al., Psychometric properties of a Persian-language version of the Beck Depression Inventory--Second edition: BDI-II-PERSIAN. Depress Anxiety, 2005. 21(4): p. 185-92.

Benedict, R.H., et al., Minimal neuropsychological assessment of MS patients: a consensus approach. Clin Neuropsychol, 2002. 16(3): p. 381-97.

Eshaghi, A., et al., Validity and reliability of a Persian translation of the Minimal Assessment of Cognitive Function in Multiple Sclerosis (MACFIMS). Clin Neuropsychol, 2012. 26(6): p. 975-84.

Benton, A.L., Neuropsychological assessment. Annu Rev Psychol, 1994. 45: p. 1-23.

Saimpont, A., T. Pozzo, and C. Papaxanthis, Aging affects the mental rotation of left and right hands. PLoS One, 2009. 4(8): p. e6714.

Krupp, L.B. and L.E. Elkins, Fatigue and declines in cognitive functioning in multiple sclerosis. Neurology, 2000. 55(7): p. 934-9.

Johnson, S.H., Cerebral organization of motor imagery: contralateral control of grip selection in mentally represented prehension. Psychological Science, 1998. 9(3): p. 219-222.

Mutsaarts, M., B. Steenbergen, and H. Bekkering, Anticipatory planning deficits and task context effects in hemiparetic cerebral palsy. Exp Brain Res, 2006. 172(2): p. 151-62.

Shepard, R. and J. Metzler, Mental rotation of three-dimensional objects. Science, 1971. 171: p. 701-703.

Tabrizi, Y.M., et al., Compromised motor imagery ability in individuals with multiple sclerosis and mild physical disability: an ERP study. Clin Neurol Neurosurg, 2013. 115(9): p. 1738-44.

Malouin, F., et al., Working memory and mental practice outcomes after stroke. Arch Phys Med Rehabil, 2004. 85(2): p. 177-83.

Demaree, H.A., et al., Speed of information processing as a key deficit in multiple sclerosis: implications for rehabilitation. J Neurol Neurosurg Psychiatry, 1999. 67(5): p. 661-3.

Pelosi, L., et al., Working memory impairment in early multiple sclerosis. Evidence from an event-related potential study of patients with clinically isolated myelopathy. Brain, 1997. 120 ( Pt 11): p. 2039-58.

Thornton, A.E. and N. Raz, Memory impairment in multiple sclerosis: a quantitative review. Neuropsychology, 1997. 11(3): p. 357-66.

How to Cite
Azin M, Zangiabadi N, Moghadas Tabrizi Y, Iranmanesh F, Baneshi MR. Deficiency in Mental Rotation of Upper and Lower-Limbs in Patients With Multiple Sclerosis and Its Relation With Cognitive Functions. Acta Med Iran. 54(8):510-517.