Evaluation of SD-208, a TGF-β-RI Kinase Inhibitor, as an Anticancer Agent in Retinoblastoma

  • Puran Fadakar Department of Biochemistry and Genetics, Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran.
  • Abolfazl Akbari Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran.
  • Fariba Ghassemi Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran.
  • Gholam Reza Mobini Medical Plants Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran.
  • Masoumeh Mohebi Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran.
  • Manzar Bolhassani Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
  • Hoda Abed Khojasteh Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran.
  • Mansour Heidari Mail Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. AND Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.
Keywords:
miRNA, Retinoblastoma, SD-208, Y-79 cell line

Abstract

Retinoblastoma is the most common intraocular tumor in children resulting from genetic alterations and transformation of mature retinal cells. The objective of this study was to investigate the effects of SD-208, TGF-β-RI kinase inhibitor, on the expression of some miRNAs including a miR-17/92 cluster in retinoblastoma cells. Prior to initiate this work, the cell proliferation was studied by Methyl Thiazolyl Tetrazolium (MTT) and bromo-2′-deoxyuridine (BrdU) assays. Then, the expression patterns of four miRNAs (18a, 20a, 22, and 34a) were investigated in the treated SD-208 (0.0, 1, 2 and 3 µM) and untreated Y-79 cells. A remarkable inhibition of the cell proliferation was found in Y-79 cells treated with SD-208 versus untreated cells. Also, the expression changes were observed in miRNAs 18a, 20a, 22 and 34a in response to SD-208 treatment (P<0.05). The findings of the present study suggest that the anti-cancer effect of SD-208 may be exerted due to the regulation of specific miRNAs, at least in this particular retinoblastoma cell line. To the best of the researchers’ knowledge, this is the first report demonstrating that the SD-208 could alter the expression of tumor suppressive miRNAs as well as oncomiRs in vitro. In conclusion, the present data suggest that SD-208 could be an alternative agent in retinoblastoma treatment.

References

Gurney JG, Ross JA, Wall DA, Bleyer WA, Severson RK, Robison LL. Infant cancer in the U.S.: histology-specific incidence and trends, 1973 to 1992. Journal of pediatric hematology/oncology. 1997;19(5):428-32.

Hanahan D, Weinberg RA. The Hallmarks of Cancer. Cell. 2000;100(1):57-70.

Knudson AG, Jr. Mutation and cancer: statistical study of retinoblastoma. Proceedings of the National Academy of Sciences of the United States of America. 1971;68(4):820-3.

Rushlow DE, Mol BM, Kennett JY, Yee S, Pajovic S, Theriault BL, et al. Characterisation of retinoblastomas without RB1 mutations: genomic, gene expression, and clinical studies. The Lancet Oncology. 2013;14(4):327-34.

Zhou Y, Zhang X, Klibanski A. Genetic and epigenetic mutations of tumor suppressive genes in sporadic pituitary adenoma. Molecular and cellular endocrinology. 2014;386(1-2):16-33.

MacGrogan D, Bookstein R. Tumour suppressor genes in prostate cancer. Seminars in cancer biology. 1997;8(1):11-9.

Sabado Alvarez C. Molecular biology of retinoblastoma. Clinical & translational oncology : official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico. 2008;10(7):389-94.

Felsher DW. Role of MYCN in retinoblastoma. The Lancet Oncology. 2013;14(4):270-1.

Parisi T, Bronson RT, Lees JA. Inactivation of the retinoblastoma gene yields a mouse model of malignant colorectal cancer. Oncogene. 2015.

Sahi H, Savola S, Sihto H, Koljonen V, Bohling T, Knuutila S. RB1 gene in Merkel cell carcinoma: hypermethylation in all tumors and concurrent heterozygous deletions in the polyomavirus-negative subgroup. APMIS : acta pathologica, microbiologica, et immunologica Scandinavica. 2014;122(12):1157-66.

Tan HL, Sood A, Rahimi HA, Wang W, Gupta N, Hicks J, et al. Rb loss is characteristic of prostatic small cell neuroendocrine carcinoma. Clinical cancer research : an official journal of the American Association for Cancer Research. 2014;20(4):890-903.

Toki H, Inoue M, Minowa O, Motegi H, Saiki Y, Wakana S, et al. Novel retinoblastoma mutation abrogating the interaction to E2F2/3, but not E2F1, led to selective suppression of thyroid tumors. Cancer science. 2014;105(10):1360-8.

Varghese AM, Zakowski MF, Yu HA, Won HH, Riely GJ, Krug LM, et al. Small-cell lung cancers in patients who never smoked cigarettes. Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer. 2014;9(6):892-6.

Deng L, Yang SB, Xu FF, Zhang JH. Long noncoding RNA CCAT1 promotes hepatocellular carcinoma progression by functioning as let-7 sponge. Journal of experimental & clinical cancer research : CR. 2015;34:18.

Hunten S, Kaller M, Drepper F, Oeljeklaus S, Bonfert T, Erhard F, et al. p53-regulated networks of protein, mRNA, miRNA and lncRNA expression revealed by integrated pSILAC and NGS analyses. Molecular & cellular proteomics : MCP. 2015.

Jin K, Luo G, Xiao Z, Liu Z, Liu C, Ji S, et al. Noncoding RNAs as potential biomarkers to predict the outcome in pancreatic cancer. Drug design, development and therapy. 2015;9:1247-55.

Liang WC, Fu WM, Wong CW, Wang Y, Wang WM, Hu GX, et al. The LncRNA H19 promotes epithelial to mesenchymal transition by functioning as MiRNA sponges in colorectal cancer. Oncotarget. 2015.

Liz J, Esteller M. lncRNAs and microRNAs with a role in cancer development. Biochimica et biophysica acta. 2015.

Zhou X, Ye F, Yin C, Zhuang Y, Yue G, Zhang G. The Interaction Between MiR-141 and lncRNA-H19 in Regulating Cell Proliferation and Migration in Gastric Cancer. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology. 2015;36(4):1440-52.

Mirakholi M, Mahmoudi T, Heidari M. MicroRNAs horizon in retinoblastoma. Acta medica Iranica. 2013;51(12):823-9.

Akbari A, Amanpour S, Muhammadnejad S, Ghahremani MH, Ghaffari SH, Dehpour AR, et al. Evaluation of antitumor activity of a TGF-beta receptor I inhibitor (SD-208) on human colon adenocarcinoma. Daru : journal of Faculty of Pharmacy, Tehran University of Medical Sciences. 2014;22:47.

Lin SY, Chang HH, Lai YH, Lin CH, Chen MH, Chang GC, et al. Digoxin Suppresses Tumor Malignancy through Inhibiting Multiple Src-Related Signaling Pathways in Non-Small Cell Lung Cancer. PloS one. 2015;10(5):e0123305.

Ge R, Rajeev V, Ray P, Lattime E, Rittling S, Medicherla S, et al. Inhibition of growth and metastasis of mouse mammary carcinoma by selective inhibitor of transforming growth factor-beta type I receptor kinase in vivo. Clinical cancer research : an official journal of the American Association for Cancer Research. 2006;12(14 Pt 1):4315-30.

Mohammad KS, Javelaud D, Fournier PG, Niewolna M, McKenna CR, Peng XH, et al. TGF-beta-RI kinase inhibitor SD-208 reduces the development and progression of melanoma bone metastases. Cancer research. 2011;71(1):175-84.

Uhl M, Aulwurm S, Wischhusen J, Weiler M, Ma JY, Almirez R, et al. SD-208, a novel transforming growth factor beta receptor I kinase inhibitor, inhibits growth and invasiveness and enhances immunogenicity of murine and human glioma cells in vitro and in vivo. Cancer research. 2004;64(21):7954-61.

Yin JJ, Selander K, Chirgwin JM, Dallas M, Grubbs BG, Wieser R, et al. TGF-beta signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. Journal of Clinical Investigation. 1999;103(2):197-206.

Gaspar NJ, Li L, Kapoun AM, Medicherla S, Reddy M, Li G, et al. Inhibition of transforming growth factor beta signaling reduces pancreatic adenocarcinoma growth and invasiveness. Molecular pharmacology. 2007;72(1):152-61.

Medicherla S, Li L, Ma JY, Kapoun AM, Gaspar NJ, Liu YW, et al. Antitumor activity of TGF-beta inhibitor is dependent on the microenvironment. Anticancer research. 2007;27(6b):4149-57.

Krutilina R, Sun W, Sethuraman A, Brown M, Seagroves TN, Pfeffer LM, et al. MicroRNA-18a inhibits hypoxia-inducible factor 1-alpha activity and lung metastasis in basal breast cancers. Breast cancer research : BCR. 2014;16(4):R78.

Jacquemin C, Karcioglu ZA. Detection of optic nerve involvement in retinoblastoma with enhanced computed tomography. Eye (London, England). 1998;12 ( Pt 2):179-83.

Magramm I, Abramson DH, Ellsworth RM. Optic nerve involvement in retinoblastoma. Ophthalmology. 1989;96(2):217-22.

Lodygin D, Tarasov V, Epanchintsev A, Berking C, Knyazeva T, Korner H, et al. Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell cycle (Georgetown, Tex). 2008;7(16):2591-600.

Kovacs B, Lumayag S, Cowan C, Xu S. MicroRNAs in early diabetic retinopathy in streptozotocin-induced diabetic rats. Investigative ophthalmology & visual science. 2011;52(7):4402-9.

He L, He X, Lowe SW, Hannon GJ. microRNAs join the p53 network--another piece in the tumour-suppression puzzle. Nature reviews Cancer. 2007;7(11):819-22.

Raver-Shapira N, Marciano E, Meiri E, Spector Y, Rosenfeld N, Moskovits N, et al. Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Molecular cell. 2007;26(5):731-43.

Christoffersen NR, Shalgi R, Frankel LB, Leucci E, Lees M, Klausen M, et al. p53-independent upregulation of miR-34a during oncogene-induced senescence represses MYC. Cell death and differentiation. 2010;17(2):236-45.

Schirmer U, Doberstein K, Rupp AK, Bretz NP, Wuttig D, Kiefel H, et al. Role of miR-34a as a suppressor of L1CAM in endometrial carcinoma. Oncotarget. 2014;5(2):462-72.

Genovese G, Ergun A, Shukla SA, Campos B, Hanna J, Ghosh P, et al. microRNA regulatory network inference identifies miR-34a as a novel regulator of TGF-beta signaling in glioblastoma. Cancer discovery. 2012;2(8):736-49.

Qiao P, Li G, Bi W, Yang L, Yao L, Wu D. microRNA-34a inhibits epithelial mesenchymal transition in human cholangiocarcinoma by targeting Smad4 through transforming growth factor-beta/Smad pathway. BMC cancer. 2015;15(1):469.

Dalgard CL, Gonzalez M, deNiro JE, O'Brien JM. Differential microRNA-34a expression and tumor suppressor function in retinoblastoma cells. Investigative ophthalmology & visual science. 2009;50(10):4542-51.

Fan X, Liu Y, Jiang J, Ma Z, Wu H, Liu T, et al. miR-20a promotes proliferation and invasion by targeting APP in human ovarian cancer cells. Acta biochimica et biophysica Sinica. 2010;42(5):318-24.

O'Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT. c-Myc-regulated microRNAs modulate E2F1 expression. Nature. 2005;435(7043):839-43.

Pickering MT, Stadler BM, Kowalik TF. miR-17 and miR-20a temper an E2F1-induced G1 checkpoint to regulate cell cycle progression. Oncogene. 2009;28(1):140-5.

Reddycherla AV, Meinert I, Reinhold A, Reinhold D, Schraven B, Simeoni L. miR-20a Inhibits TCR-Mediated Signaling and Cytokine Production in Human Naïve CD4+ T Cells. PloS one. 2015;10(4).

He FC, Meng WW, Qu YH, Zhou MX, He J, Lv P, et al. Expression of circulating microRNA-20a and let-7a in esophageal squamous cell carcinoma. World Journal of Gastroenterology : WJG. 2015;21(15):4660-5.

Li X, Zhang Z, Yu M, Li L, Du G, Xiao W, et al. Involvement of miR-20a in Promoting Gastric Cancer Progression by Targeting Early Growth Response 2 (EGR2). International Journal of Molecular Sciences. 2013;14(8):16226-39.

Xiong Y, Zhang L, Kebebew E. MiR-20a Is Upregulated in Anaplastic Thyroid Cancer and Targets LIMK1. PloS one. 2014;9(5).

Zhao S, Yao D, Chen J, Ding N, Ren F. MiR-20a Promotes Cervical Cancer Proliferation and Metastasis In Vitro and In Vivo. PloS one. 2015;10(3).

Beta M, Venkatesan N, Vasudevan M, Vetrivel U, Khetan V, Krishnakumar S. Identification and Insilico Analysis of Retinoblastoma Serum microRNA Profile and Gene Targets Towards Prediction of Novel Serum Biomarkers. Bioinformatics and biology insights. 2013;7:21-34.

Ebi H, Sato T, Sugito N, Hosono Y, Yatabe Y, Matsuyama Y, et al. Counterbalance between RB inactivation and miR-17-92 overexpression in reactive oxygen species and DNA damage induction in lung cancers. Oncogene. 2009;28(38):3371-9.

Guo J, Miao Y, Xiao B, Huan R, Jiang Z, Meng D, et al. Differential expression of microRNA species in human gastric cancer versus non-tumorous tissues. Journal of gastroenterology and hepatology. 2009;24(4):652-7.

Sylvestre Y, De Guire V, Querido E, Mukhopadhyay UK, Bourdeau V, Major F, et al. An E2F/miR-20a autoregulatory feedback loop. The Journal of biological chemistry. 2007;282(4):2135-43.

Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proceedings of the National Academy of Sciences of the United States of America. 2006;103(7):2257-61.

Kimchi A, Wang XF, Weinberg RA, Cheifetz S, Massague J. Absence of TGF-beta receptors and growth inhibitory responses in retinoblastoma cells. Science (New York, NY). 1988;240(4849):196-9.

MacKay SL, Yaswen LR, Tarnuzzer RW, Moldawer LL, Bland KI, Copeland EM, 3rd, et al. Colon cancer cells that are not growth inhibited by TGF-beta lack functional type I and type II TGF-beta receptors. Annals of surgery. 1995;221(6):767-76; discussion 76-7.

Published
2016-06-08
How to Cite
1.
Fadakar P, Akbari A, Ghassemi F, Mobini GR, Mohebi M, Bolhassani M, Abed Khojasteh H, Heidari M. Evaluation of SD-208, a TGF-β-RI Kinase Inhibitor, as an Anticancer Agent in Retinoblastoma. Acta Med Iran. 54(6):352-358.
Section
Articles