Original Article

Dantrolene: A Selective Ryanodine Receptor Antagonist, Protects Against Pentylenetetrazole-Induced Seizure in Mice

Abstract

Ryanodine receptor abnormalities has implicated in the generation and maintenance of seizure. Dantrolene, a selective ryanodine receptor antagonist, may be a potential drug for the prevention of seizure. Therefore, we aimed to clarify the protective effects of dantrolene against pentylenetetrazole seizure in mice. Male albino mice were received an intra-peritoneal injection of pentylenetetrazole (80 mg/kg) in seven separate groups (n=8). We used dantrolene (10,20 and 40 mg/kg), caffeine (200 mg/kg), dantrolene (40 mg/kg) + caffeine (200 mg/kg), diazepam (5 mg/kg as a positive control) and vehicle 30 minutes before the injection of pentylenetetrazole. Then, we registered the latency time of the first seizure, the severity of seizures and the incidence of seizure and death. Kruskal-Wallis test followed by Mann-Whitney and Fisher’s exact test were used to analyze the data. Dantrolene (10,20 and 40 mg/kg) significantly increased the latency time for the first seizure. Furthermore, dantrolene (20 and 40 mg/kg, but not 10 mg/kg) attenuated the severity of seizures in comparison to the vehicle group. Moreover, dantrolene only at the dose of 40 mg/kg prevented from tonic-clonic seizure and death in comparison to the vehicle group. In contrast, the addition of caffeine abolished the protective effects of dantrolene on the tonic-clonic seizure/death and inhibited the beneficial effects of dantrolene on the severity of pentylenetetrazol seizures. The acute dantrolene administration produced an anticonvulsant effect in the pentylenetetrazole-induced seizure. Moreover, caffeine prevented from dantrolene anticonvulsant effects. These results may imply about ryanodine receptors and intracellular calcium roles in the generation and control of pentylenetetrazole seizure.

Senanayake N, Roman GC. Epidemiology of epilepsy in developing countries. Bull World Health Organ 1993;71(2):247-58. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8490989

Perucca P, Gilliam FG, Schmitz B. Epilepsy treatment as a predeterminant of psychosocial ill health. Epilepsy & Behavior 2009;15(2):S46-S50.

Schmidt D, Stavem K. Long-term seizure outcome of surgery versus no surgery for drug-resistant partial epilepsy: a review of controlled studies. Epilepsia 2009 Jun;50(6):1301-9. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?

cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19243421

Morrow J, Russell A, Guthrie E, et al. Malformation risks of antiepileptic drugs in pregnancy: a prospective study from the UK Epilepsy and Pregnancy Register. Journal of Neurology, Neurosurgery & Psychiatry 2006;77(2):193-8.

Bialer M, White HS. Key factors in the discovery and development of new antiepileptic drugs. Nature reviews Drug discovery 2010;9(1):68-82.

Pal S, Sun D, Limbrick D, et al. Epileptogenesis induces long-term alterations in intracellular calcium release and sequestration mechanisms in the hippocampal neuronal culture model of epilepsy. Cell Calcium 2001;30(4):285-96. http://www.sciencedirect.com/science/article/pii/S0143416001902362

McPherson PS, Kim YK, Valdivia H, et al. The brain ryanodine receptor: a caffeine-sensitive calcium release channel. Neuron 1991 Jul;7(1):17-25. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=1648939

Mori F, Okada M, Tomiyama M, et al. Effects of ryanodine receptor activation on neurotransmitter release and neuronal cell death following kainic acid-induced status epilepticus. Epilepsy Res 2005 Jun;65(1-2):59-70. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15979854

Chrościńska-Krawczyk M, Jargiełło-Baszak M, Wałek M, et al. Caffeine and the anticonvulsant potency of antiepileptic drugs: experimental and clinical data. Pharmacological Reports 2011;63(1):12-8.

Yoshida S, Okada M, Zhu G, et al. Effects of zonisamide on neurotransmitter exocytosis associated with ryanodine receptors. Epilepsy Research 2005;67(3):153-62.

Yoshida S, Yamamura S, Ohoyama K, et al. Effects of valproate on neurotransmission associated with ryanodine receptors. Neuroscience Research 2010;68(4):322-8. http://www.sciencedirect.com/science/article/pii/S0168010210027859

Zhao F, Li P, Chen SW, et al. Dantrolene inhibition of ryanodine receptor Ca2+ release channels molecular mechanism and isoform selectivity. Journal of Biological Chemistry 2001;276(17):13810-6.

Popescu B, Oprica M, Sajin M, et al. Dantrolene protects neurons against kainic acid induced apoptosis in vitro and in vivo. Journal of cellular and molecular medicine 2002;6(4):555-69.

Rogawski MA. Molecular targets versus models for new antiepileptic drug discovery. Epilepsy Research 2006;68(1):22-8.

Kupferberg H. Animal models used in the screening of antiepileptic drugs. Epilepsia 2001;42(s4):7-12.

Porter RJ, Cereghino JJ, Gladding GD, et al. Antiepileptic drug development program. Cleve Clin Q 1984;51(2):293-305.

Löscher W. Animal models of epilepsy and epileptic seizures. Antiepileptic Drugs: Springer; 1999. p. 19-62.

Ali A, Ahmad FJ, Pillai KK, et al. Amiloride protects against pentylenetetrazole-induced kindling in mice. British Journal of Pharmacology 2005;145(7):880-4. http://dx.doi.org/10.1038/sj.bjp.0706291

Nagatomo I, Hashiguchi W, Tominaga M, et al. Effects of MK-801, dantrolene, and FK506 on convulsive seizures and brain nitric oxide production in seizure-susceptible EL mice. Brain Research 2001;888(2):306-10. http://www.sciencedirect.com/science/article/pii/S0006899300031012

Tizzano J, Griffey K, Schoepp D. Induction or protection of limbic seizures in mice by mGluR subtype selective agonists. Neuropharmacology 1995;34(8):1063-7.

Yoshida M, Sakai T. Dantrolene, a calcium-induced calcium release inhibitor, prevents the acquisition of amygdaloid kindling in rats, a model of experimental epilepsy. Tohoku J Exp Med 2006 Aug;209(4):303-10. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16864952

Borowicz KK, Gasior M, Kleinrok Z, et al. Influence of isradipine, niguldipine and dantrolene on the anticonvulsive action of conventional antiepileptics in mice. European Journal of Pharmacology 1997;323(1):45-51. http://www.sciencedirect.com/science/article/pii/S0014299997000204

Mody I, MacDonald JF. NMDA receptor-dependent excitotoxicity: the role of intracellular Ca 2+ release. Trends in pharmacological sciences 1995;16(10):356-9.

Yoshida S, Okada M, Zhu G, et al. Carbamazepine prevents breakdown of neurotransmitter release induced by hyperactivation of ryanodine receptor. Neuropharmacology 2007 Jun;52(7):1538-46. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?

cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17445842

Onozuka M, Nakagaki I, Sasaki S. Pentylenetetrazole-induced seizure activity produces an increased release of calcium from endoplasmic reticulum by mediating cyclic AMP-dependent protein phosphorylation in rat cerebral cortex. General Pharmacology: The Vascular System 1989 //;20(5):627-34. http://www.sciencedirect.com/science/article/pii/0306362389900980

Kulkarni C, Joseph T, David J. Influence of adenosine receptor antagonists, aminophylline and caffeine, on seizure protective ability of antiepileptic drugs in rats. Indian journal of experimental biology 1991;29(8):751-4.

Nagarkatti N, Deshpande LS, DeLorenzo RJ. Levetiracetam inhibits both ryanodine and IP3 receptor activated calcium induced calcium release in hippocampal neurons in culture. Neurosci Lett 2008 May 16;436(3):289-93. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?

cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18406528

Fisone G, Borgkvist A, Usiello A. Caffeine as a psychomotor stimulant: mechanism of action. Cellular and Molecular Life Sciences CMLS 2004;61(7-8):857-72.

Takeshima H, Nishimura S, Matsumoto T, et al. Primary structure and expression from complementary DNA of skeletal muscle ryanodine receptor. Nature 1989 Jun 8;339(6224):439-45. http://www.ncbi.nlm.nih.gov/pubmed/2725677

Hertle DN, Yeckel MF. Distribution of inositol-1,4,5-trisphosphate receptor isotypes and ryanodine receptor isotypes during maturation of the rat hippocampus. Neuroscience 2007 Dec 12;150(3):625-38. http://www.ncbi.nlm.nih.gov/pubmed/17981403

Nakai J, Imagawa T, Hakamat Y, et al. Primary structure and functional expression from cDNA of the cardiac ryanodine receptor/calcium release channel. FEBS letters 1990 Oct 1;271(1-2):169-77. http://www.ncbi.nlm.nih.gov/pubmed/2226801

Marangos P, Paul SM, Parma A, et al. Purinergic inhibition of diazepam binding to rat brain (in vitro). Life sciences 1979;24(9):851-7.

Huang R-Q, Bell-Horner CL, Dibas MI, et al. Pentylenetetrazole-induced inhibition of recombinant γ-aminobutyric acid type A (GABAA) receptors: mechanism and site of action. Journal of Pharmacology and Experimental Therapeutics 2001;298(3):986-95.

Johansson B, Georgiev V, Kuosmanen T, et al. Long‐term Treatment with some Methylxanthines Decreases the Susceptibility to Bicuculline‐and Pentylenetetrazol‐induced Seizures in Mice. Relationship to c‐ios Expression and Receptor Binding. European Journal of Neuroscience 1996;8(12):2447-58.

Boison D. Methylxanthines, seizures, and excitotoxicity. Methylxanthines: Springer; 2011. p. 251-66.

Files
IssueVol 54, No 9 (2016) QRcode
SectionOriginal Article(s)
Keywords
Dantrolene Ryanodine receptors Caffeine Pentylenetetrazole Seizure

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Keshavarz M, Fotouhi M, Rasti A. Dantrolene: A Selective Ryanodine Receptor Antagonist, Protects Against Pentylenetetrazole-Induced Seizure in Mice. Acta Med Iran. 2016;54(9):555-561.