Editorial

Regulatory T Lymphocytes in Amyotrophic Lateral Sclerosis: Emerging Evidence to Support Adaptive Immunotherapy?

de Carvalho M, Swash M. Can selection of rapidly progressing patients shorten clinical trials in amyotrophic lateral sclerosis? Arch Neurol 2006:63:557-60. doi: 10.1001/archneur.63.4.557.

Kanouchi T, Ohkubo T, Yokota T. Can regional spreading of amyotrophic lateral sclerosis motor symptoms be explained by prion-like propagation? J Neurol Neurosurg Psychiatry 2012:83:739-45. doi: 10.1136/jnnp-2011-301826.

Bonafede R, Mariotti R. ALS Pathogenesis and Therapeutic Approaches: The Role of Mesenchymal Stem Cells and Extracellular Vesicles. Front Cell Neurosci 2017:11. doi: 10.3389/fncel.2017.00080.

Martin LJ. Mitochondrial pathobiology in ALS. J Bioenerg Biomembr 2011:43:569-79. doi: 10.1007/s10863-011-9395-y.

Lobsiger CS, Cleveland DW. Glial cells as intrinsic components of non-cell autonomous neurodegenerative disease. Nat Neurosci 2007:10:1355-60. doi: 10.1038/nn1988.

Lewis KE, Rasmussen AL, Bennett W, et al. Microglia and motor neurons during disease progression in the SOD1(G93A) mouse model of amyotrophic lateral sclerosis: changes in arginase1 and inducible nitric oxide synthase. J Neuroinflammation 2014:11:55. doi: 10.1186/1742-2094-11-55.

Beers DR, Henkel JS, Zhao W, Wang J, Appel SH. CD4+ T cells support glial neuroprotection, slow disease progression, and modify glial morphology in an animal model of inherited ALS. Proc Natl Acad Sci U S A 2008:105:15558-63. doi: 10.1073/pnas.0807419105.

Beers DR, Henkel JS, Zhao W, et al. Endogenous regulatory T lymphocytes ameliorate amyotrophic lateral sclerosis in mice and correlate with disease progression in patients with amyotrophic lateral sclerosis. Brain 2011:134:1293-314. doi: 10.1093/brain/awr074.

Beers DR, Zhao W, Wang J, et al. ALS patients’ regulatory T lymphocytes are dysfunctional, and correlate with disease progression rate and severity. JCI Insight:2. doi: 10.1172/jci.insight.89530.

Sabado J, Casanovas A, Hernandez S, Piedrafita L, Hereu M, Esquerda JE. Immunodetection of disease-associated conformers of mutant cu/zn superoxide dismutase 1 selectively expressed in degenerating neurons in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 2013:72:646-61. doi: 10.1097/NEN.0b013e318297fd10.

Sabado J, Casanovas A, Rodrigo H, Arque G, Esquerda JE. Adverse effects of a SOD1-peptide immunotherapy on SOD1 G93A mouse slow model of amyotrophic lateral sclerosis. Neuroscience 2015:310:38-50. doi: 10.1016/j.neuroscience.2015.09.027.

Angelov DN, Waibel S, Guntinas-Lichius O, et al. Therapeutic vaccine for acute and chronic motor neuron diseases: Implications for amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 2003:100:4790-5. doi: 10.1073/pnas.0530191100.

Spadaro M, Montarolo F, Perga S, et al. Biological activity of glatiramer acetate on Treg and anti-inflammatory monocytes persists for more than 10years in responder multiple sclerosis patients. Clin Immunol 2017:181:83-88. doi: 10.1016/j.clim.2017.06.006.

Files
IssueVol 56, No 2 (2018) QRcode
SectionEditorial
Keywords
No keywords##

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Rashid Chehreh Bragh S, Rahmani F, Rezaei N. Regulatory T Lymphocytes in Amyotrophic Lateral Sclerosis: Emerging Evidence to Support Adaptive Immunotherapy?. Acta Med Iran. 2018;56(2):74-76.