Articles

Evaluation of Serum Protein Carbonyl Levels and Total Antioxidant Capacity in Patients With Basal Cell Carcinoma

Abstract

Basal cell carcinoma (BCC) is one of the most common types of human cancer. Since oxidative stress is believed to be one of the pathogenic mechanisms involved in BCC formation, understanding the probable relation of inflammatory, oxidative factors, such as serum protein carbonyl and total antioxidant capacity, to BCC can help identify other pathogenic aspects of this tumor. Forty cases of BCC and forty cases of healthy controls without BCC or any other systemic disease were included in this study. After 5-ml venous blood samples were obtained from each patient, the separated serum fractions were stored at -70° C until analysis. Serum protein carbonyl level in the BCC group was significantly higher than that in the healthy controls ((5.86±3.25 µM vs. 0.86±0.20 µM, P<0.001). The average serum total antioxidant capacity was 3.41±0.05 mM in the BCC group and 1.15±0.03 mM in the control group (statistically significant at P<001). Oxidative stress might play a role in the pathogenesis of BCC.

Heck DE, Vetrano AM, Mariano TM, Laskin JD. UVB light stimulates production of reactive oxygen species: unexpected role for catalase. The Journal of biological chemistry. 2003;278(25):22432-6.

Beehler BC, Przybyszewski J, Box HB, F. K-MM. Formation of 8-hydroxydeoxyguanosine within DNA of mouse keratinocytes exposed in culture to UVB and H2O2. Carcinogenesis. 1992;13:2003-7.

Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39(1):44-84.

Halliwell B. Oxygen and nitrogen are pro-carcinogens. Damage to DNA by reactive oxygen, chlorine and nitrogen species: measurement, mechanism and the effects of nutrition. Mutat Res. 1999;443(1-2):37-52.

Leeuwenburgh C, Hansen PA, Holloszy JO, Heinecke JW. Oxidized amino acids in the urine of aging rats: potential markers for assessing oxidative stress in vivo. Am J Physiol. 1999;276(1 Pt 2):R128-35.

Chen L, Hu JY, Wang SQ. The role of antioxidants in photoprotection: a critical review. J Am Acad Dermatol. 2012;67(5):1013-24.

Hashemy SI, Gharaei S, Vasigh S, Kargozar S, Alirezaei B, Keyhani FJ, et al. Oxidative stress factors and C-reactive protein in patients with oral lichen planus before and 2 weeks after treatment. Journal of Oral Pathology & Medicine. 2016;45(1):35-40.

Sander CS, Chang H, Salzmann S, Muller CS, Ekanayake-Mudiyanselage S, Elsner P, et al. Photoaging is associated with protein oxidation in human skin in vivo. J Invest Dermatol. 2002;118(4):618-25.

Stocker P, Ricquebourg E, Vidal N, Villard C, Lafitte D, Sellami L, et al. Fluorimetric screening assay for protein carbonyl evaluation in biological samples. Anal Biochem. 2015;482:55-61.

Requena JR, Levine RL, Stadtman ER. Recent advances in the analysis of oxidized proteins. Amino Acids. 2003;25(3-4):221-6.

Stadtman ER. Role of oxidant species in aging. Curr Med Chem. 2004;11(9):1105-12.

Chevion M, Berenshtein E, Stadtman ER. Human studies related to protein oxidation: protein carbonyl content as a marker of damage. Free Radic Res. 2000;33 Suppl:S99-108.

Jomova K, Vondrakova D, Lawson M, Valko M. Metals, oxidative stress and neurodegenerative disorders. Mol Cell Biochem. 2010;345(1-2):91-104.

Klaunig JE, Kamendulis LM, Hocevar BA. Oxidative stress and oxidative damage in carcinogenesis. Toxicol Pathol. 2010;38(1):96-109.

Whaley-Connell A, McCullough PA, Sowers JR. The role of oxidative stress in the metabolic syndrome. Rev Cardiovasc Med. 2011;12(1):21-9.

Romano AD, Serviddio G, de Matthaeis A, Bellanti F, Vendemiale G. Oxidative stress and aging. J Nephrol. 2011;23:29-36.

Taheri A, Tanipour MH, Khorasani ZK, Kiafar B, Layegh P, Hashemy SI. Serum protein carbonyl and total antioxidant capacity levels in pemphigus vulgaris and bullous pemphigoid. Iranian Journal of Dermatology. 2016;18(4):156-62.

Ames BN, Shigenaga MK, Hagen TM. Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci U S A. 1993;90(17):7915-22.

Yu BP. Cellular defenses against damage from reactive oxygen species. Physiol Rev. 1994;74(1):139-62.

Hashemy SI. The Human Thioredoxin System: Modifications and Clinical Applications. Iran J Basic Med Sci. 2011;14(3):191-204.

Cao G, Verdon CP, Wu AH, Wang H, Prior RL. Automated assay of oxygen radical absorbance capacity with the COBAS FARA II. Clin Chem. 1995;41(12 Pt 1):1738-44.

Petropoulos I, Conconi M, Wang X, Hoenel B, Bregegere F, Milner Y, et al. Increase of oxidatively modified protein is associated with a decrease of proteasome activity and content in aging epidermal cells. J Gerontol A Biol Sci Med Sci. 2000;55(5):B220-7.

Bastiaens MT, Hoefnagel JJ, Bruijn JA, Westendorp RG, Vermeer BJ, Bouwes Bavinck JN. Differences in age, site distribution, and sex between nodular and superficial basal cell carcinoma indicate different types of tumors. J Invest Dermatol. 1998;110(6):880-4.

Sobhani M, Taheri AR, Jafarian AH, Hashemy SI. The activity and tissue distribution of thioredoxin reductase in basal cell carcinoma. J Cancer Res Clin. 2016;142(11):2303-7.

Sander CS, Hamm F, Elsner P, Thiele JJ. Oxidative stress in malignant melanoma and non-melanoma skin cancer. Br J Dermatol. 2003;148(5):913-22.

Vural P, Canbaz M, Selcuki D. Plasma antioxidant defence in actinic keratosis and basal cell carcinoma. J Eur Acad Dermatol Venerol. 1995;2:96-101.

van der Pols JC, Heinen MM, Hughes MC, Ibiebele TI, Marks GC, Green AC. Serum antioxidants and skin cancer risk: an 8-year community-based follow-up study. Cancer Epidemiol Biomarkers Prev. 2009;18(4):1167-73.

Relhan V, Gupta SK, Dayal S, Pandey R, Lal H. Blood thiols and malondialdehyde levels in psoriasis. J Dermatol. 2002;29(7):399-403.

Aly DG, Shahin RS. Oxidative stress in lichen planus. Acta Dermatovenerol Alp Pannonica Adriat. 2010;19(1):3-11.

Passi S, Grandinetti M, Maggio F, Stancato A, De Luca C. Epidermal oxidative stress in vitiligo. Pigment Cell Res. 1998;11(2):81-5.

Files
IssueVol 57, No 3 (2019) QRcode
SectionArticles
DOI https://doi.org/10.18502/acta.v57i3.1816
Keywords
Basal cell carcinoma Serum protein carbonyl Total antioxidant capacity Oxidative stress

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Hashemy SI, Taheri AR, Behnamfard M, Teimourian M, Sabouri Rad S. Evaluation of Serum Protein Carbonyl Levels and Total Antioxidant Capacity in Patients With Basal Cell Carcinoma. Acta Med Iran. 2019;57(3):152-155.