Articles

Molecular Epidemiology of blaCMY-1, blaCMY-2, blaFOX Genes in K. pneumoniae From Elderly Patients in Tehran, Iran

Abstract

The growth rate of the population aging is increasing worldwide. To assess antimicrobial susceptibility of extended-spectrum β-lactamase- (ESBL-) producing Klebsiella pneumoniae Isolated from Patients aging in Rasool Akram, Hospital, as well as to identify AmpC genes. 100 K. pneumoniae strain isolated from different clinical samples. Isolates resistant to oxyimino-cephalosporins and to cefoxitin evaluated to phenotypic ESBL production and to phenotypic AmpC production, respectively. Detection of resistance genes was then performed using primers specific for AmpC genes. Piperacillin/tazobactam and carbapenems remained the active β-lactam antibiotic against K. pneumoniae. ESBLs were detected among 40 (40%) of K. pneumoniae isolates. CMY-1 gene was detected in 34.3% of all AmpC-positive isolates, whereas CMY-2 and FOX genes were 14.2% and 28.6%, respectively. The consumption of Carbapenem family drugs is high in Iranian hospitals which are used as a first line of treatment without antibiotic susceptibility testing. Therefore, increase in antibiotic resistance to this family drugs is unavoidable in the near future. Therefore, it is necessary to take the necessary measures to modify the administration and use of antibiotics.

1. Martínez-Aguilar G, Alpuche-Aranda CM, Anaya C, Alcantar-Curiel D, Gayosso C, Daza C, et al. Outbreak of Nosocomial Sepsis and Pneumonia in a Newborn Intensive Care Unit by Multiresistant Extended-Spectrum β-Lactamase-Producing Klebsiella pneumoniae High Impact on Mortality. Infect Control Hosp Epidemiol 2001;22:725-8.
2. Macrae M, Shannon K, Rayner D, Kaiser A, Hoffman P, French G. A simultaneous outbreak on a neonatal unit of two strains of multiply antibiotic resistant Klebsiella pneumoniae controllable only by ward closure. J Hosp Infect 2001;49:183-92.
3. Rawat D, Nair D. Extended-spectrum β-lactamases in Gram Negative Bacteria. J Glob Infect Dis 2010;2:263-74.
4. Liu XQ, Liu YR. Detection and genotype analysis of AmpC β‑lactamase in Klebsiella pneumoniae from tertiary hospitals. Exp Ther Med 2016;12:480-4.
5. Mammeri H, Guillon H, Eb F, Nordmann P. Phenotypic and biochemical comparison of the carbapenem-hydrolyzing activities of five plasmid-borne AmpC β-lactamases. Antimicrob Agents Chemother 2010;54:4556-60.
6. Oteo J, Delgado-Iribarren A, Vega D, Bautista V, Rodríguez MC, Velasco M, et al. Emergence of imipenem resistance in clinical Escherichia coli during therapy. Int J Antimicrob Agents 2008;32:534-7.
7. Shahcheraghi F, Nobari S, Rahmati Ghezelgeh F, Nasiri S, Owlia P, Nikbin VS, et al. First report of New Delhi metallo-beta-lactamase-1-producing Klebsiella pneumoniae in Iran. Microb Drug Resist 2013;19:30-6.
8. Solgi H, Badmasti F, Aminzadeh Z, Giske C, Pourahmad M, Vaziri F, et al. Molecular characterization of intestinal carriage of carbapenem-resistant Enterobacteriaceae among inpatients at two Iranian university hospitals: first report of co-production of bla NDM-7 and bla OXA-48. Eur J Clin Microbiol Infect Dis 2017;36:2127-35.
9. Helmy MM, Wasfi R. Phenotypic and molecular characterization of plasmid mediated AmpC β-lactamases among Escherichia coli, Klebsiella spp., and Proteus mirabilis isolated from urinary tract infections in Egyptian hospitals. Biomed Res Int 2014;2014: 171548
10. Tugal D, Lynch M, Hujer AM, Rudin S, Perez F, Bonomo RA. Multi-drug-resistant Klebsiella pneumoniae pancreatitis: A new challenge in a serious surgical infection. Surg Infect (Larchmt) 2015;16:188-93.
11. Lee J, Pai H, Kim YK, Kim NH, Eun BW, Kang HJ, et al. Control of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae in a children's hospital by changing antimicrobial agent usage policy. J Antimicrob Chemother 2007;60:629-37.
12. Bauernfeind A, Schneider I, Jungwirth R, Sahly H, Ullmann U. A novel type of AmpC β-lactamase, ACC-1, produced by a Klebsiella pneumoniae strain causing nosocomial pneumonia. Antimicrob Agents Chemother 1999;43:1924-31.
13. Teethaisong Y, Eumkeb G, Chumnarnsilpa S, Autarkool N, Hobson J, Nakouti I, et al. Phenotypic detection of AmpC β-lactamases, extended-spectrum β-lactamases and metallo-β-lactamases in Enterobacteriaceae using a resazurin microtitre assay with inhibitor-based methods. J Med Microbiol 2016;65:1079-87.
14. Bonnedahl J, Hernandez J, Stedt J, Waldenström J, Olsen B, Drobni M. Extended-spectrum β-lactamases in Escherichia coli and Klebsiella pneumoniae in gulls, Alaska, USA. Emerg Infect Dis 2014;20:897-9.
15. Jacobs C, Frère J-M, Normark S. Cytosolic intermediates for cell wall biosynthesis and degradation control inducible β-lactam resistance in gram-negative bacteria. Cell 1997;88:823-32.
16. Song W, Kim J-S, Kim H-S, Yong D, Jeong SH, Park M-J, et al. Increasing trend in the prevalence of plasmid-mediated AmpC β-lactamases in Enterobacteriaceae lacking chromosomal ampC gene at a Korean university hospital from 2002 to 2004. Diagn Microbiol Infect Dis 2006;55:219-24.
17. Younas S, Ejaz H, Zafar A, Ejaz A, Saleem R, Javed H. AmpC beta-lactamases in Klebsiella pneumoniae: An emerging threat to the paediatric patients. J Pak Med Assoc 2018;68:893-7.
18. Gupta V, Bansal N, Singla N, Chander J. Occurrence and phenotypic detection of class A carbapenemases among Escherichia coli and Klebsiella pneumoniae blood isolates at a tertiary care center. J Microbiol Immunol Infect 2013;46:104-8.
19. Fam N, Gamal D, El Said M, El Defrawy I, El Dadei E, El Attar S, et al. Prevalence of plasmid-mediated ampC genes in clinical isolates of Enterobacteriaceae from Cairo, Egypt. Microbiol Res J Int 2013;3:525-37.
20. Mata C, Miró E, Rivera A, Mirelis B, Coll P, Navarro F. Prevalence of acquired AmpC β‐lactamases in Enterobacteriaceae lacking inducible chromosomal ampC genes at a Spanish hospital from 1999 to 2007. Clin Microbiol Infect 2010;16:472-6.
21. Manchanda V, Singh NP. Occurrence and detection of AmpC β-lactamases among Gram-negative clinical isolates using a modified three-dimensional test at Guru Tegh Bahadur Hospital, Delhi, India. J Antimicrob Chemother 2003;51:415-8.
22. Yilmaz N, Agus N, Bozcal E, Oner O, Uzel A. Detection of plasmid-mediated AmpC β-lactamase in Escherichia coli and Klebsiella pneumoniae. Indian J Med Microbiol 2013;31:53-9.
23. van't Veen A, van der Zee A, Nelson J, Speelberg B, Kluytmans JA, Buiting AG. Outbreak of infection with a multiresistant Klebsiella pneumoniae strain associated with contaminated roll boards in operating rooms. J Clin Microbiol 2005;43:4961-7.
24. Bakthavatchalu S, Shakthivel U, Mishra T. Detection of ESBL among ampc producing enterobacteriaceae using inhibitor-based method. Pan Afr Med J 2013;14:28.
25. Akinniyi A, Oluwaseun E, Motayo B, Adeyokinu A. Emerging Multidrug Resistant AmpC beta-Lactamase and Carbapenamase Enteric Isolates in Abeokuta, Nigeria. Nat Sci 2012;7:70-4.
26. Ishii Y, Alba J, Kimura S, Shiroto K, Yamaguchi K. Evaluation of antimicrobial activity of β-lactam antibiotics using Etest against clinical isolates from 60 medical centres in Japan. Int J Antimicrob Agents 2005;25:296-301.
27. Liu X, Liu Y. Detection of plasmid-mediated AmpC β-lactamase in Escherichia coli. Biomed Rep 2016;4:687-90.
28. Masoumi Asl H, Badamchi A, Javadinia S, Khaleghi S, Tehraninia L, Saedi S, et al. Prevalence of Helicobacter pylori vacA, cagA, cagE1, cagE2, dupA and oipA Genotypes in Patients With Gastrointestinal Diseases. Acta Med Iran 58:310-7.
Files
IssueVol 59, No 8 (2021) QRcode
SectionArticles
DOI https://doi.org/10.18502/acta.v59i8.7250
Keywords
Beta-lactamases Aging CMY-1 beta-lactamase (blaCMY-1) CMY-2 beta-lactamases (blaCMY-2) Cefoxitin beta-lactamase (blaFOX)

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Badamchi A, Namazi Shabestari A, Etemadi MR, Tabatabaei A. Molecular Epidemiology of blaCMY-1, blaCMY-2, blaFOX Genes in K. pneumoniae From Elderly Patients in Tehran, Iran. Acta Med Iran. 2021;59(8):472-476.