Is There Any Association Between the MEF2A Gene Changes and Coronary Artery Disease?
Abstract
Coronary artery disease (CAD) is a common multifactorial disease with a high rate of morbidity and mortality worldwide. The MEF2A gene transcription factor belongs to the myocyte enhancer factor-2 (MEF2) family and is involved in critical processes such as calcium-dependent signaling pathways and cardiac development. Although the variants of the MEF2A gene were studied in different CAD and myocardial infarction (MI) populations, the reality of this gene association with CAD is still unclear. This study reports the first in silico investigation on MEF2A variants. All reported variants in CAD/MI patients were collected from eleven countries. Their pathogenicity and variant position conservation were surveyed by online prediction tools, including Mutation-Taster, Polyphen-2, PROVEAN, SIFT, CADD, and GERP. In silico analysis did not confirm the pathogenic effect of 21-bp deletion, which was introduced as a monogenic cause of CAD. c.704C>A (p.S235Y), c.812C>G (p.P271R), c.836C>T (p.P279L) and c.848G>A (p.G283D) missenses, c.1315C>T (p.R439X) nonsense, and seven out-of-frame deletions were predicted as disease-causing variants. Although some variants of the MEF2A gene affect protein structure, the MEF2A variation studies in CAD/MI patients and in silico analysis do not approve the association and pathogenicity of MEF2A variants in the familial/sporadic CAD.
doi:10.1002/0471142905.hg0720s76
Altshuler, D., & Hirschhorn, J. N. (2005). MEF2A sequence variants and coronary artery disease: a change of heart?.Journal of clinical investigation, 115(4), 831-833. doi: 10.1172/JCI200524715
Bhagavatula, M. R., Fan, C., Shen, G.-Q., Cassano, J., Plow, E. F., Topol, E. J., & Wang, Q. (2004). Transcription factor MEF2A mutations in patients with coronary artery disease. Humman molecular genetics, 13(24), 3181-3188.
doi: 10.1093/hmg/ddh329
Chang, S., McKinsey, T. A., Zhang, C. L., Richardson, J. A., Hill, J. A., Olson, E. N. (2004). Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development. Molecular and cellular biology, 24(19), 8467-8476.
doi: 10.1128/MCB.24.19.8467-8476.2004
Choi, Y., & Chan, A. P. (2015). PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics, 31(16), 2745-2747. doi:10.1093/bioinformatics/btv195
Dai, D. P., Zhou, X. Y., Xiao, Y., Xu, F., Sun, F. C., Ji, F. S., . . . Zheng, J. D. (2010). Structural changes in exon 11 of MEF2A are not related to sporadic coronary artery disease in Han Chinese population. European jornal of clinical investigation, 40(8), 669-677.
doi: 10.1111/j.1365-2362.2010.02307.x.
Dai, X., Wiernek, S., Evans, J. P., & Runge, M. S. (2016). Genetics of coronary artery disease and myocardial infarction. World journal of cardiology, 8(1), 1-23.
doi: 10.4330/wjc.v8.i1.1
Dai, Y., Zhang, S., & Wu, W. (2013). Analysis of MEF2A mutations in a Chinese population with premature coronary artery disease. Genetic testing and molecular biomarkers, 17(4), 352-355.
doi: 10.1089/gtmb.2012.0467
Davydov, E. V., Goode, D. L., Sirota, M., Cooper, G. M., Sidow, A., & Batzoglou, S. (2010). Identifying a high fraction of the human genome to be under selective constraint using GERP++. PLoS computational biology, 6(12), e1001025.
doi: 10.1371/journal.pcbi.1001025
Elhawari, S., Al-Boudari, O., Muiya, P., Khalak, H., Andres, E., Al-Shahid, M., . . . Dzimiri, N. (2010). A study of the role of the myocyte-specific enhancer factor-2A gene in coronary artery disease.Atherosclerosis, 209(1), 152-154.
doi: 10.1016/j.atherosclerosis.2009.09.005
Foroughmand, A. M., Shahbazi, Z., Galehdari, H., Borujeni, M. P., Dinarvand, P., & Golabgirkhademi, K. (2014). Association of MEF2A gene polymorphisms with coronary artery disease. Iranian Red Crescent medical journal, 16(8), e13533.
doi: 10.5812/ircmj.13533
González, P., García-Castro, M., Reguero, J. R., Batalla, A., Ordoñez, A. G., Palop, R. L., . . . Coto, E. (2006). The Pro279Leu variant in the transcription factor MEF2A is associated with myocardial infarction. Journal of medical genetics, 43(2), 167-169.
doi: 10.1136/jmg.2005.035071
Guella, I., Rimoldi, V., Asselta, R., Ardissino, D., Francolini, M., Martinelli, N., . . . Merlini, P. A. (2009). Association and functional analyses of MEF2A as a susceptibility gene for premature myocardial infarction and coronary artery disease. Circulation. Cardiovascular genetics, 2(2), 165-172.
doi: 10.1161/CIRCGENETICS.108.819326
Gulec, S., Ruchan Akar, A., & Akar, N. (2008). MEF2A sequence variants in Turkish population.
Clinical and applied thrombosis hemostasis, 14(4), 465-467.
doi:10.1177/1076029607306403
Hajar, R. (2017). Risk factors for coronary artery disease: historical perspectives. Heart views, 18(3), 109-114.
doi: 10.4103/HEARTVIEWS.HEARTVIEWS_106_17
Han, Y., Yang, Y., Zhang, X., Yan, C., Xi, S., & Kang, J. (2007). Relationship of the CAG repeat polymorphism of the MEF2A gene and coronary artery disease in a Chinese population. Clinical chemistry and laboratory medicine, 45(8), 987-992.
doi: 10.1515/CCLM.2007.159
Horan, P. G., Allen, A. R., Hughes, A. E., Patterson, C. C., Spence, M., McGlinchey, P. G., . . . McKeown, P. P. (2006). Lack of MEF2A Δ7aa mutation in Irish families with early onset ischaemic heart disease, a family based study. BMC Medical Genetics, 7(1), 65.
doi: 10.1186/1471-2350-7-65
Ioannidis, N. M., Rothstein, J. H., Pejaver, V., Middha, S., McDonnell, S. K., Baheti, S., . . . Karyadi, D. (2016). REVEL: an ensemble method for predicting the pathogenicity of rare missense variants. American journal of human genetics, 99(4), 877-885.
doi: 10.1016/j.ajhg.2016.08.016
Kajimoto, K., Shioji, K., Tago, N., Tomoike, H., Nonogi, H., Goto, Y., & Iwai, N. (2005). Assessment of MEF2A mutations in myocardial infarction in Japanese patients. Circulation journal, 69(10), 1192-1195.
doi: 10.1253/circj.69.1192
Kircher, M., Witten, D. M., Jain, P., O'Roak, B. J., Cooper, G. M., & Shendure, J. (2014). A general framework for estimating the relative pathogenicity of human genetic variants. Nature genetics, 46(3), 310-315.
doi: 10.1038/ng.2892
Landrum, M. J., Lee, J. M., Benson, M., Brown, G., Chao, C., Chitipiralla, S., . . . Hoover, J. (2015). ClinVar: public archive of interpretations of clinically relevant variants. Nucleic acids research, 44(D1), D862-D868.
doi: 10.1093/nar/gkv1222
Lek, M., Karczewski, K. J., Minikel, E. V., Samocha, K. E., Banks, E., Fennell, T., . . . Cummings, B. B. (2016). Analysis of protein-coding genetic variation in 60,706 humans. Nature, 536(7616), 285-291.
doi: 10.1038/nature19057
Li, J., Chen, H., Yang, J., Li, W., Du, R., & Tian, L. (2014). MEF2A gene mutations and susceptibility to coronary artery disease in the Chinese population. Genetics and molecular research : GMR, 13(4), 8396-8402.
doi: 10.4238/2014.October.20.15
Li, J., Yang, J., Li, W., Du, R., Gui, L., Tian, L., & Guo, Q. (2006). Study on novel mutations of MEF2A gene in Chinese patients with coronary artery disease. Chinese journal of medical genetics, 23(3), 265-268.
Lieb, W., Mayer, B., Konig, I. R., Borwitzky, I., Gotz, A., Kain, S., . . . Doring, A. (2008). Lack of association between the MEF2A gene and myocardial infarction. Circulation, 117(2), 185-191.
doi: 10.1161/CIRCULATIONAHA.107.728485
Liu, Y., Niu, W., Wu, Z., Su, X., Chen, Q., Lu, L., & Jin, W. (2012). Variants in exon 11 of MEF2A gene and coronary artery disease: evidence from a case-control study, systematic review, and meta-analysis. PLoS One, 7(2), e31406.
doi: 10.1371/journal.pone.0031406
Maiolino, G., Colonna, S., Zanchetta, M., Pedon, L., Seccia, T. M., Cesari, M., . . . Rossi, G, P. (2011). Exon 11 deletion in the myocyte enhancer factor (MEF) 2A and early onset coronary artery disease gene in a Sicilian family. European journal of cardiovascular prevention and rehabilitation, 18(4), 557-560.
doi: 10.1177/1741826710397112
McKinsey, T. A., Zhang, C. L., & Olson, E. N. (2002). MEF2: a calcium-dependent regulator of cell division, differentiation and death. Trends in biochemical sciences, 27(1), 40-47.
doi: 10.1016/S0968-0004(01)02031-X
Nature, G. P. C. (2015). A global reference for human genetic variation. Nature, 526(7571), 68-74.
doi: 10.1038/nature15393
Naya, F. J., Black, B. L., Wu, H., Bassel-Duby, R., Richardson, J. A., Hill, J. A., & Olson, E. N. (2002). Mitochondrial deficiency and cardiac sudden death in mice lacking the MEF2A transcription factor. Nature medicine, 8(11), 1303-1309.
doi: 10.1038/nm789
Nikpay, M., Goel, A., Won, H.-H., Hall, L. M., Willenborg, C., Kanoni, S., . . . Hopewell, J. C. (2015). A comprehensive 1000 Genomes–based genome-wide association meta-analysis of coronary artery disease. Nature genetics, 47(10), 1121-1130.
doi: 10.1038/ng.3396
Omidi, S., Ebrahimzadeh, F., & Kalayinia, S. (2019). 9P21. 3 locus; an important region in coronary artery disease: a panel approach to investigation of the etiology of coronary artery disease. International Journal of Cardiovascular Practice, 4(2).
doi: 10.21859/ijcp-25001
Organization. (2016). Cardiovascular diseases (CVDs).
Pon, J. R., & Marra, M. A. (2016). MEF2 transcription factors: developmental regulators and emerging cancer genes. Oncotarget, 7(3), 2297-2312.
doi: 10.18632/oncotarget.6223
Rahatloo, K. I., Davaran, S., & Elahi, E. (2013). Lack of association between the MEF2A gene and coronary artery disease in Iranian families. Iranian journal of basic medical sciences, 16(8), 950-954.
Sanchis-Gomar, F., Perez-Quilis, C., Leischik, R., & Lucia, A. (2016). Epidemiology of coronary heart disease and acute coronary syndrome. Annals of translational medicine, 4(13), 256.
doi: 10.21037/atm.2016.06.33
Schlesinger, J., Schueler, M., Grunert, M., Fischer, J. J., Zhang, Q., Krueger, T., . . . Sperling, S. R. (2011). The cardiac transcription network modulated by Gata4, Mef2a, Nkx2. 5, Srf, histone modifications, and microRNAs. PLoS genetics, 7(2), e1001313.
doi: 10.1371/journal.pgen.1001313
Schwarz, J. M., Cooper, D. N., Schuelke, M., & Seelow, D. (2014). MutationTaster2: mutation prediction for the deep-sequencing age. Nature Methods, 11(4), 361-362.
doi: 10.1038/nmeth.2890
Sim, N.-L., Kumar, P., Hu, J., Henikoff, S., Schneider, G., & Ng, P. C. (2012). SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Research, 40, W452-W457.
doi:10.1093/nar/gks539
van der Harst, P., & Verweij, N. (2018). Identification of 64 novel genetic loci provides an expanded view on the genetic architecture of coronary artery disease. Circulation research, 122(3), 433-443.
doi: 10.1161/CIRCRESAHA.117.312086
Wang, L., Fan, C., Topol, S. E., Topol, E. J., & Wang, Q. (2003). Mutation of MEF2A in an inherited disorder with features of coronary artery disease. Science, 302(5650), 1578-1581.
doi: 10.1126/science.1088477
Warde-Farley, D., Donaldson, S. L., Comes, O., Zuberi, K., Badrawi, R., Chao, P., . . . Lopes, C. T. (2010). The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic acids research, 38, W214-W220.
doi: 10.1093/nar/gkq537
Weng, L., Kavaslar, N., Ustaszewska, A., Doelle, H., Schackwitz, W., Hébert, S., . . . Pennacchio, L. A. (2005). Lack of MEF2A mutations in coronary artery disease. The Journal of clinical investigation, 115(4), 1016-1020.
doi: 10.1172/JCI200524186
Xu, D. L., Tian, H. L., Cai, W. L., Zheng, J., Gao, M., Zhang, M. X., . . . Lu, Q. H. (2016). Novel 6-bp deletion in MEF2A linked to premature coronary artery disease in a large Chinese family. Molecular medicine reports, 14(1), 649-654.
doi: 10.3892/mmr.2016.5297
Yuan, H., Lü, H.-W., Hu, J., Chen, S.-H., Yang, G.-P., & Huang, Z.-J. (2006). MEF2A gene and susceptibility to coronary artery disease in the Chinese people. Journal of Central South Uni-versity. Medical sciences, 31(4), 453-457.
Files | ||
Issue | Vol 58, No 8 (2020) | |
Section | Original Article(s) | |
DOI | https://doi.org/10.18502/acta.v58i8.4584 | |
Keywords | ||
Coronary artery disease Myocyteenhancer factor-2(MEF2A) In silicoanalysis |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |