Review Article

Adoptive Chimeric Antigen Receptor T Cell (CAR-T) and Treg Cell-Based Immunotherapies: Frontier Therapeutic Aspects in Cancers

Abstract

Based on this point that some cancers do not appropriately respond to conventional therapy, and there is the possibility of relapse, immunotherapy is currently under investigation. Cancer immunotherapies are widely recognized as transformational for several cancers and enable to move to the front-line therapy with few side effects. One of its new branches is treatment with T-cells that have been changed their receptor. The research on these cells is generally according to the design of a receptor against a specific tumor antigen. Also, manipulation of regulatory T-cell (Tregs), as the barriers to proper immune responses in the tumor microenvironment, will promote Tregs-targeted therapeutic opportunities and improve the efficacy of the current cancer treatment, such as radiation and chemotherapy. This review attempts to show novel insights into the roles of Tregs in cancer which can be considered a promising anticancer therapeutic strategy for targeting them and approaches for the generation of tumor antigen-specific T lymphocytes (AST) using chimeric antigen receptors.

1. McLaughlin L, Cruz CR, Bollard CM. Adoptive T-cell therapies for refractory/relapsed leukemia and lymphoma: current strategies and recent advances. THER ADV HEMATOL; 2015. 6. (6): 295-307.
2. Massari F, Santoni M, Ciccarese C, Santini D, Alfieri S, Martignoni G, et al. PD-1 blockade therapy in renal cell carcinoma: current studies and future promises. Cancer Treat. Rev; 2015. 41. (2): 114-21.
3. Lee DW, Gardner R, Porter DL, Louis CU, Ahmed N, Jensen M, et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood; 2014. 124. (2): 188-95.
4. Prasad V. immunotherapy: Tisagenlecleucel—the first approved Car-t-cell therapy: implications for payers and policy makers. Nat Rev Clin Oncol; 2018. 15. (1): 11.
5. Brentjens RJ, Davila ML, Riviere I, Park J, Wang X, Cowell LG, et al. CD19-targeted T-cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci. Transl. Med; 2013. 5. (177): 177ra38-ra38.
6. Davila ML, Riviere I, Wang X, Bartido S, Park J, Curran K, et al. Efficacy and toxicity management of 19-28z CAR T-cell therapy in B cell acute lymphoblastic leukemia. Sci. Transl. Med; 2014. 6. (224): 224ra25-ra25.
7. Zhao H, Liao X, Kang Y. Tregs: where we are and what comes next?. FRONT IMMUNOL; 2017. 8: 1578.
8. Beier UH. Apoptotic Regulatory T-cells Retain Suppressive Function through Adenosine. Cell Metab; 2018. 27. (1): 5-7.
9. Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science; 1996. 271. (5256): 1734-6.
10. Godin-Ethier J, Hanafi LA, Piccirillo CA, Lapointe R. Indoleamine 2, 3-dioxygenase expression in human cancers: clinical and immunologic perspectives. Clin. Cancer Res; 2011. 17. (22): 6985-91.
11. Ye Q, Wang C, Xian J, Zhang M, Cao Y, Cao Y. Expression of programmed cell death protein 1 (PD-1) and indoleamine 2, 3-dioxygenase (IDO) in the tumor microenvironment and in tumor-draining lymph nodes of breast cancer. Hum. Pathol; 2018. 75: 81-90.
12. Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science; 2015. 348. (6230): 69-74.
13. Ingram JR, Blomberg OS, Rashidian M, Ali L, Garforth S, Fedorov E, et al. Anti–CTLA-4 therapy requires an Fc domain for efficacy. PNAS; 2018. 115. (15): 3912-7.
14. Sharma A, Subudhi SK, Blando J, Scutti J, Vence L, Wargo J, et al. Anti-CTLA-4 immunotherapy does not deplete FOXP3+ regulatory T-cells (Tregs) in human cancers. Clin. Cancer Res; 2019. 25. (4): 1233-8.
15. Vargas FA, Furness AJ, Litchfield K, Joshi K, Rosenthal R, Ghorani E, et al. Fc effector function contributes to the activity of human anti-CTLA-4 antibodies. Cancer cell; 2018. 33. (4): 649-63.
16. Liu Y, Zheng P. How does an anti-CTLA-4 antibody promote cancer immunity?. Trends Immunol; 2018. 39. (12): 953-6.
17. Francisco LM, Sage PT, Sharpe AH. The PD‐1 pathway in tolerance and autoimmunity. Immunol. Rev; 2010. 236. (1): 219-42.
18. Mizukami Y, Kono K, Kawaguchi Y, Akaike H, Kamimura K, Sugai H, et al. CCL17 and CCL22 chemokines within tumor microenvironment are related to accumulation of Foxp3+ regulatory T-cells in gastric cancer. Int. J. Oncol; 2008. 122. (10): 2286-93.
19. Wu X, Gu Z, Chen Y, Chen B, Chen W, Weng L, et al. Application of PD-1 blockade in cancer immunotherapy. COMPUT STRUCT BIOTEC; 2019. 17: 661-74.
20. Yoshida K, Okamoto M, Sasaki J, Kuroda C, Ishida H, Ueda K, et al. Anti-PD-1 antibody decreases tumour-infiltrating regulatory T cells. BMC cancer; 2020. 20. (1): 1-0.
21. Nagarsheth N, Wicha MS, Zou W. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat. Rev.; 2017. 17. (9): 559.
22. Gobert M, Treilleux I, Bendriss-Vermare N, Bachelot T, Goddard-Leon S, Arfi V, et al. Regulatory T cells recruited through CCL22/CCR4 are selectively activated in lymphoid infiltrates surrounding primary breast tumors and lead to an adverse clinical outcome. Cancer Res.; 2009. 69. (5): 2000-9.
23. Mizukami Y, Kono K, Kawaguchi Y, Akaike H, Kamimura K, Sugai H, et al. CCL17 and CCL22 chemokines within tumor microenvironment are related to accumulation of Foxp3+ regulatory T cells in gastric cancer. Int. J. Oncol.; 2008. 12
24. de la Vega MR, Chapman E, Zhang DD. NRF2 and the Hallmarks of Cancer. Cancer cell; 2018. 34. (1): 21-43.
25. Maj T, Wang W, Crespo J, Zhang H, Wang W, Wei S, et al. Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1-blockade resistance in tumor. Nat. Immunol.; 2017. 18. (12): 1332-41.
26. Levine AG, Mendoza A, Hemmers S, Moltedo B, Niec RE, Schizas M, et al. Stability and function of regulatory T-cells expressing the transcription factor T-bet. Nature; 2017. 546. (7658): 421.
27. Overacre-Delgoffe AE, Chikina M, Dadey RE, Yano H, Brunazzi EA, Shayan G, et al. Interferon-γ drives T reg fragility to promote anti-tumor immunity. Cell; 2017. 169. (6): 1130-41. e11.
28. Hori S, Nomura T, Sakaguchi S. Control of regulatory T-cell development by the transcription factor Foxp3. Science; 2003. 299. (5609): 1057-61.
29. Martin CA, Homaidan FR, Palaia T, Burakoff R, El-Sabban ME. Gap junctional communication between murine macrophages and intestinal epithelial cell lines. Cell Commun. Adhes.; 1998. 5. (6): 437-49.
30. Fonseca PC, Nihei OK, Savino W, Spray DC, Alves LA. Flow cytometry analysis of gap junction‐mediated cell–cell communication: Advantages and pitfalls. Cytometry Part A: The Journal of the International Society for Analytical Cytology; 2006. 69. (6): 487-93.
31. Buck MD, Sowell RT, Kaech SM, Pearce EL. Metabolic instruction of immunity. Cell. 2017. 169. (4): 570-86.
32. Levine AG, Mendoza A, Hemmers S, Moltedo B, Niec RE, Schizas M, et al. Stability and function of regulatory T-cells expressing the transcription factor T-bet. Nature; 2017. 546. (7658): 421.
33. Wang CQ, Huang YW, Wang SW, Huang YL, Tsai CH, Zhao YM, et al. Amphiregulin enhances VEGF-A production in human chondrosarcoma cells and promotes angiogenesis by inhibiting miR-206 via FAK/c-Src/PKCδ pathway. Cancer Lett.; 2017. 385: 261-70.
34. Zhao W, Ding G, Wen J, Tang Q, Yong H, Zhu H, et al. Correlation between Trop2 and amphiregulin coexpression and overall survival in gastric cancer. Cancer Med.; 2017. 6. (5): 994-1001.
35. Tung SL, Huang WC, Hsu FC, Yang ZP, Jang TH, Chang JW, et al. miRNA-34c-5p inhibits amphiregulin-induced ovarian cancer stemness and drug resistance via downregulation of the AREG-EGFR-ERK pathway. Oncogenesis; 2017. 6. (5): e326.
36. Turnis ME, Sawant DV, Szymczak-Workman AL, Andrews LP, Delgoffe GM, Yano H, et al. Interleukin-35 limits anti-tumor immunity. Immunity; 2016. 44. (2): 316-29.
37. Allard D, Turcotte M, Stagg J. Targeting A2 adenosine receptors in cancer. IMMUNOL CELL BIOL. 2017. 95. (4): 333-9.
38. Peggs KS, Quezada SA, Chambers CA, Korman AJ, Allison JP. Blockade of CTLA-4 on both effector and regulatory T-cell compartments contributes to the antitumor activity of anti–CTLA-4 antibodies. J EXP MED; 2009. 206. (8): 1717-25.
39. Ishida Y, Agata Y, Shibahara K, Honjo T. Induced expression of PD‐1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. The EMBO journal; 1992. 11. (11): 3887-95.
40. Blake SJ, Dougall WC, Miles JJ, Teng MW, Smyth MJ. Molecular pathways: targeting CD96 and TIGIT for cancer immunotherapy. Clin. Cancer Res.; 2016. 22. (21): 5183-8.
41. Goldberg MV, Drake CG. LAG-3 in cancer immunotherapy. CANCER IMMUNOL IMMUN; 2010. 269-278.
42. Anderson AC. Tim-3: an emerging target in the cancer immunotherapy landscape. Cancer Immunol. Res.; 2014. 2. (5): 393-8.
43. Huang YH, Zhu C, Kondo Y, Anderson AC, Gandhi A, Russell A, et al. Corrigendum: CEACAM1 regulates TIM-3-mediated tolerance and exhaustion; Nature. 2016. 536. (7616): 359.
44. Brentjens RJ, Riviere I, Park JH, Davila ML, Wang X, Stefanski J, et al. Safety and persistence of adoptively transferred autologous CD19-targeted T-cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood; 2011. 118. (18): 4817-28.
45. Hollyman D, Stefanski J, Przybylowski M, Bartido S, Borquez-Ojeda O, Taylor C, et al. Manufacturing validation of biologically functional T-cells targeted to CD19 antigen for autologous adoptive cell therapy. Journal of immunotherapy (Hagerstown, Md: 1997); 2009. 32. (2): 169.
46. Savoldo B, Ramos CA, Liu E, Mims MP, Keating MJ, Carrum G, et al. CD28 costimulation improves expansion and persistence of chimeric antigen receptor–modified T-cells in lymphoma patients. J CLIN INVEST; 2011. 121. (5): 1822-6.
47. Van Der Stegen SJ, Hamieh M, Sadelain M. The pharmacology of second-generation chimeric antigen receptors. Nat. Rev. Drug Discov.; 2015. 14. (7): 499-509.
48. Maus MV, June CH. Making better chimeric antigen receptors for adoptive T-cell therapy. AACR; 2016.
49. Mirzaei HR, Rodriguez A, Shepphird J, Brown CE, Badie B. Chimeric Antigen Receptors T-cell Therapy in Solid Tumor: Challenges and Clinical Applications. FRONT IMMUNOL; 2017. 8.
50. Ahmed N, Brawley VS, Hegde M, Robertson C, Ghazi A, Gerken C, et al. Human epidermal growth factor receptor 2 (HER2)–specific chimeric antigen receptor–modified T cells for the immunotherapy of HER2-positive sarcoma. J. Clin. Oncol.; 2015. 33. (15): 1688.
51. Tanyi JL, Haas AR, Beatty GL, Morgan MA, Stashwick CJ, O'Hara MH, et al. Abstract CT105: Safety and feasibility of chimeric antigen receptor modified T cells directed against mesothelin (CART-meso) in patients with mesothelin expressing cancers. AACR; 2015: CT105-CT105.
52. Slovin SF, Wang X, Hullings M, Arauz G, Bartido S, Lewis JS, et al. Chimeric antigen receptor (CAR+) modified T cells targeting prostate specific membrane antigen (PSMA) in patients (pts) with castrate metastatic prostate cancer (CMPC). 2013: TPS3115-TPS3115.
53. Kloss CC, Condomines M, Cartellieri M, Bachmann M, Sadelain M. Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T-cells. Nat Biotechnol; 2013. 31. (1): 71–5.
54. Arabi F, Torabi-Rahvar M, Shariati A, Ahmadbeigi N, Naderi M. Antigenic targets of CAR T-cell Therapy. A retrospective view on clinical trials. Exp. Cell Res.; 2018. 369. (1): 1-0.
55. Knochelmann HM, Smith AS, Dwyer CJ, Wyatt MM, Mehrotra S, Paulos CM. CAR T-cells in solid tumors: blueprints for building effective therapies. FRONT IMMUNOL; 2018. 9: 1740.
56. Morgan RA, Yang JC, Kitano M, Dudley ME, Laurencot CM, Rosenberg SA. Case report of a serious adverse event following the administration of T-cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther; 2010. 18: 843–51.
57. Goodyear O, Agathanggelou A, Novitzky-Basso I, Siddique S, McSkeane T, Ryan G, et al. Induction of a CD8+ T-cell response to the MAGE cancer testis antigen by combined treatment with azacitidine and sodium valproate in patients with acute myeloid leukemia and myelodysplasia. Blood; 2010. 116. (11): 1908-18.
58. Cruz CR, Gerdemann U, Leen AM, Shafer JA, Ku S, Tzou B, et al. Improving T-cell therapy for relapsed EBV-negative Hodgkin lymphoma by targeting upregulated MAGE-A4. Clin. Cancer Res.; 2011. 17. (22): 7058-66.
59. Hughes-Parry HE, Cross RS, Jenkins MR. The Evolving Protein Engineering in the Design of Chimeric Antigen Receptor T Cells. Int. J. Mol. Sci.; 2020. 21. (1): 204.
60. Cho JH, Collins JJ, Wong WW. Universal chimeric antigen receptors for multiplexed and logical control of T-cell responses. Cell; 2018. 173. (6): 1426-38.
61. Yoon DH, Osborn MJ, Tolar J, Kim CJ. Incorporation of immune checkpoint blockade into chimeric antigen receptor T-cells (CAR-Ts): combination or built-in CAR-T. Int. J. Mol. Sci.; 2018. 19. (2): 340.
Files
IssueVol 59, No 10 (2021) QRcode
SectionReview Article(s)
DOI https://doi.org/10.18502/acta.v59i10.7760
Keywords
Receptors Chimeric antigen T-lymphocytes Regulatory Tumor microenvironment Immunotherapy Adoptive

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Bahraini M, Fazeli A. Adoptive Chimeric Antigen Receptor T Cell (CAR-T) and Treg Cell-Based Immunotherapies: Frontier Therapeutic Aspects in Cancers. Acta Med Iran. 2021;59(10):570-577.