Review Article

The Significant Role of the Sympathetic Nervous System in Hospitalization and Death of Patients With COVID-19: Psycho-Neuroendocrine-Immune Aspect of Stress

Abstract

The primary immune responses to CoV-19 are inter-individual variability against this virus. Studies on the neuro-immune system demonstrate that interactions in these communication pathways can be a reason for several psychiatric disorders and immune-mediated diseases. Stress-related behaviors are significant in the psycho-immune interactions, and even stress-related factors such as socioeconomic status can also play a vital role in these interactions. A literature review on the topic was carried out, and 150 articles were included. Catecholamine and glucocorticoids are stress neurohormones. Noradrenaline as signaling molecules, through macrophages, can be an essential stimulus for cytokine secretion. Glucocorticoids, by both pro-and anti-inflammatory roles in specific conditions, can inhibit the elevation of the inflammatory response by inhibiting the pro-inflammatory macrophage activation and also enhance the anti-inflammatory activity in monocyte/macrophage populations the further eliminate. Stress with this flawed amplification feedback system can disrupt immune homeostasis (cytokine storm) in the patient with COVID-19. This investigation showed that there is a strong link between psycho-neuroendocrine-immune axis organizations against respiratory viral infections during the COVID-19 epidemic. The stress cascade must be responsible for meeting the body's hemostatic challenges in the necessary physiological and metabolic interactions. The motivation of the stress system leads to behavioral/physical variations that are strangely consistent in their qualitative presentation. These variations must be generally adaptive and increase the chances of the individual's survival. In coronavirus respiratory disease, identifying people with acute/chronic psychosocial stress is of particular importance for providing prompt care as soon as possible, as scheduling intervention appears to be an essential factor in reducing stress and hospitalization rate in the intensive care unit (ICU).

1. Dantzer R. Neuroimmune interactions: From the brain to the immune system and vice versa. Physiol Rev 2018;98:477-504.
2. Besedovsky H, Sorkin E. Network of immune-neuroendocrine interactions. Clin Exp Immunol 1977;27:1-12.
3. Wu Y, Xu X, Chen Z, Duan J, Hashimoto K, Yang L, et al. Nervous system involvement after infection with COVID-19 and other coronaviruses. Brain Behav Immun 2020;87:18-22.
4. Ellul MA, Benjamin L, Sigh B, Lant S, Michael BD, Easton A, et al. Neurological associations of COVID-19. Lancet Neurol 2020;19:767-83.
5. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med 2020;8:420-2.
6. Besedovsky HO, Rey AD. Immune-Neuro-Endocrine Interactions: Facts and Hypotheses. Endocr Rev 1996;17:64-102.
7. Pleasure SJ, Green AJ, Josephson A. The spectrum of neurologic disease in the severe acute respiratory syndrome coronavirus 2 pandemic infections: neurologists move to the frontline. JAMA Neurol 2020;77:679-80.
8. Morgello S. Coronaviruses and the central nervous system. J Neurovirol 2020;26:459-73.
9. Mao L, Jin H, Wang M, Hu Y, Chen S, He Q, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol 2020;77:683-90.
10. GuanWJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. China Medical Treatment Expert Group for Covid-19. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020;382:1708-20.
11. Dubé M, Le Coupanec A, Wong AHM, Rini JM, Desforges M, Talbot PJ, et al. Axonal transport enables neuron-to-neuron propagation of human Coronavirus OC43. J Virol 2018;92:e00404-18.
12. Brann DH, Tuskahara T, Weinreb C, Lipovsek M, Koen Van den Berge K, Gon B, et al. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. Sci Adv 2020;6:eabc5801.
13. Nampoothiri S, Sauve F, Ternier G, Fernandois D, Coelho C, Imbernon M, et al. The hypothalamus as a hub
for SARS-CoV-2 brain infection and pathogenesis. bioRxiv 2020.
14. Bryce C, Grimes Z, Pujadas E, Ahuja S, Beasley BM, Albrecht R, et al. Pathophysiology of SARS-CoV-2: targeting of endothelial cells renders a complex disease with thrombotic microangiopathy and aberrant immune response. The Mount Sinai COVID-19 autopsy experience. medRxiv 2020.
15. Cantuti-Castelvetri L, Ojha R, Pedro LD, Djannatian M, Franz J, Kuivanen S, et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry and provides a possible pathway into the central nervous system. bioRxiv 2020.
16. Velazquez-Salinas L, Verdugo-Rodriguez A, Rodriguez LL, Borca M. The role of interleukin 6 during viral infections. Front Microbiol 2019|;10:1057.
17. Zheng J, Shi Y, Xiong L, Zhang W, Li Y, Gibson PG, et al. The Expression of IL-6, TNF-α, and MCP-1 in Respiratory Viral Infection in Acute Exacerbations of Chronic Obstructive Pulmonary Disease. J Immunol Res 2017;2017:8539294.|
18. Yarlagadda A, Alfson E, Clayton AH. Psychiatry (Edgmont). The Blood Brain Barrier and the Role of Cytokines in Neuropsychiatry Psychiatry (Edgmont) 2009;6:18-22.
19. Sehgal PB, Grieninger G, Tosato G. Regulation of the acute phase and immune responses: interleukin-6. Ann N Y Acad Sci 1989;557:1-583.
20. Murakami M, Kamimura D, Hirano T. Pleiotropy and Specificity: Insights from the Interleukin 6 Family of Cytokines. Immunity 2019;50:812-31.
21. Kenney MJ, Ganta CK. Autonomic Nervous System and Immune System Interactions. Compr Physiol 2014;4:1177-1200.
22. Morrison SF. Differential control of sympathetic outflow. Am J Physiol Regul Integr Comp Physiol 2001;281:R683-98.
23. Helwig BG, Craig RA, Fels RJ, Blecha F, Kenney MJ. Central nervous system administration of interleukin-6 produces splenic sympathoexcitation. Auton Neurosci 2008;141:104-11.
24. Steinman L. Elaborate interactions between the immune and nervous systems. Nat Immunol 2004;5:575-81.
25. Terreni L, De Simoni MG. Role of the Brain in Interleukin-6 Modulation. Neuroimmunomodulation 1998;5:214-9.
26. Zangeneh FZ, Mohammadi A, Ejtemaeimehr S, Naghizadeh MM, Fatemeh A. The role of opioid system and its interaction with sympathetic nervous system in the processing of polycystic ovary syndrome modeling in rat. Arch Gynecol Obstet 2011;283:885-92.
27. Eisenstein TK. The Role of Opioid Receptors in ImmuneSystem Function. Front Immunol 2019;10:2904.
28. Frei K, Leist T, Meager A, Gallo P, Leppert D, Zinkernagel RM. Production of B cell stimulatory factor-2 and interferon gamma in the central nervous system during viral meningitis and encephalitis. J Exp Med 1988;168:449-53.
29. Wieseler-Frank J, Maier SF, Watkins LR. Central pro-inflammatory cytokines and pain enhancement. Neurosignals 2005;14:166-74.
30. Ruderman NB, Keller C, Richard AM, SahaKA, Luo Z, Xiaoqin X, et al. Interleukin-6 regulation of AMP-activated protein kinase. Potential role in the systemic response to exercise and prevention of the metabolic syndrome. Diabetes 2006;55:S48-54.
31. Navarra P, Pozzoli G, Brunetti L, Ragazzoni E, Besser M, Grossman A. Interleukin-1 beta and interleukin-6 specifically increase the release of prostaglandin E2 from rat hypothalamic explants in vitro. Neuroendocrinology 1992;56:61-8.
32. Chai Z, Gatti S, Toniatti C, Poli V, Bartfai T. Interleukin (IL)-6 gene expressions in the central nervous system is necessary for fever response to lipopolysaccharide or IL-1 beta: a study on IL-6-deficient mice. J Exp Med 183:311-6.
33. Herrmann O, Tarabin V, Suzuki S, Attigah N, Coserea I, Schneider A, et al. regulation of body temperature and neuroprotection by endogenous interleukin-6 in cerebral ischemia. J Cereb Blood Flow Metab 2003;23:406-15.
34. Erta M, Quintana A, Hidalgo J. Interleukin-6, a major cytokine in the central nervous system. Int J Biol Sci 2012;8:1254-66.
35. Yin J, Valin KL, Dixon ML, Leavenworth WJ. The role of microglia and macrophages in CNS homeostasis, autoimmunity, and cancer. J Immunol Res 2017;2017:5150678.
36. Chung WS, Clarke Le, Wang GX, Stafford KB, Sher A, Chakraborty C, et al. Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. Nature 2013;504:394-400.
37. Hanisch UK. Microglia as a source and target of cytokine. Glia 2002;40:140-55.
38. Raivich G, Bohatschek M, Kloss CU, Jones LL, Kreutzberg GW. Neuroglial activation repertoire in the injured brain: graded response, molecular mechanisms and cues to physiological function. Brain Res Brain Res Rev 1999;30:77-105.
39. Heppner FL, Prinz M, Aguzzi A. Pathogenesis of prion diseases: possible implications of microglial cells. Prog Brain Res 2001;132:737-50.
40. Blalock JE. Shared ligands and receptors as a molecular mechanism for communication between the immune and
neuroendocrine systems. Ann N Y Acad Sci 1994;741:292-8.
41. Engler KL, Rudd ML, Ryan JJ, Fischer-Stenger K. Autocrine actions of macrophage-derived catecholamines on interleukin-1h. J Neuroimmunol 2005;160:87-91.
42. Harbour DV, Smith EM, Blalock JE. Splenic lymphocyte production of an endorphin during endotoxic shock. Brain Behav Immun 1987;1:123-33.
43. Lolait SJ, Lim AT, Toh BH, Funder JW. Immunoreactive beta-endorphin in a subpopulation of mouse spleen macrophages. J Clin Invest 1984;73:277-80.
44. Hartenstein V, Giangrande A. Connecting the nervous and the immune systems in evolution. Biol Commun 2018;64:1-5.
45. Colombo E, Farina C. Astrocytes: Key Regulators of Neuroinflammation. Trends Immunol 2016;37:608-20.
46. Cordiglieri C, Farina C. Astrocytes Exert and Control Immune Responses in the Brain. Curr Immunol Rev 2006;6:150-9.
47. Wagner JA. IL-6 both a cytokine and a neurotrophic factor? J Exp Med 1996;183:2417-9.
48. Hirota H, Kiyama H, Kishimoto T, Taga T. Accelerated nerve regeneration in mice by upregulated expression of interleukin (IL) 6 and IL-6 receptor after trauma. J Exp Med 1996;183:2627-34.
49. Hsu MP, Frausto R, Rose-John S, Campbell LI. Analysis of IL-6/gp130 family receptor expression reveals that in contrast to astroglia, microglia lacks the oncostatin M receptor and functional responses to oncostatin M. Glia 2015;63:132-41.
50. Czeh M, Gressens P, Kaindl AM. The yin and yang of microglia. Dev Neurosci 2011;33:199-209.
51. Galic MA, Riazi K, Pittman QJ. Cytokines and brain excitability. Front Neuroendocrinol 2012;33:116-25.
52. Paquette SG, Banner D, Zhao Z, Fang Y, Huang HSS, Leόn JA, et al. Interleukin-6 Is a Potential Biomarker for Severe Pandemic H1N1 Influenza A Infection. Plos One 2012;7:e38214.
53. Chiaretti A, Pulitanò S, Barone G, Ferrara P, Romano V, Capozzi D, et al. IL-1β and IL-6 Upregulation in Children with H1N1 Influenza Virus Infection. Mediators of Inflammation 2013;2013:495848.
54. Hou W, Jin YH, Kang HS, Kim BS. Interleukin-6 (IL-6) and IL-17 Synergistically Promote Viral Persistence by Inhibiting Cellular Apoptosis and Cytotoxic T Cell Function. J Virol 2014;88:8479-89.
55. Walsh EE, Peterson DR, Kalkanoglu AE, Lee FE, Falsey AR. Viral shedding and immune responses to respiratory syncytial virus infection in older adults. J. Infect Dis 2013;207:1424-32.
56. Aziz M, Fatima R, Assaly R. Elevated interleukin-6 andSevere COVID-19: a meta-analysis. J Med Virol 2020;92:2283-5.
57. Kennedy RH, Silver R. Neuroimmune signaling: cytokines and the CNS. In: Pfaff DW, Volkow ND, eds. Neuroscience in the 21st Century; 2016:1-41. |
58. Vasilache AM, Qian H, Blomqvist A. Immune challenge by intraperitoneal administration of lipopolysaccharide directs gene expression in distinct blood–brain barrier cells toward enhanced prostaglandin E2 signaling. Brain Behav Immun 2015;48:31-41.
59. Roth J, Rummel C, Barth SW, Gerstberger R, Hubschle T. Molecular aspects of fever and hyperthermia. Neurol Clin 2006;24:421-39.
60. Serrats J, Schiltz JC, Garcia-Bueno B, Rooijen VN, Reyes MT, Sawchenko EP. Dual roles for perivascular macrophages in immune-to-brain signaling. Neuron 2010;65:94-106.
61. Smith TJ. Insulin-Like Growth Factor-I Regulation of Immune Function: A Potential Therapeutic Target in Autoimmune Diseases? Pharmacol Rev 2010;62:199-236.
62. Jeay S, Sonenshein GE, Postel-Vinay MC, Kelly PA, Baixeras E. Growth hormone can act as a cytokine controlling survival and proliferation of immune cells: New insights into signaling pathways. Mol Cell Endocrinol 2002;188:1-7.
63. Gjerstad JK, Lightman SL, Spiga F. Role of glucocorticoid negative feedback in the regulation of HPA axis pulsatility. Stress 2018;21:403-16.
64. O’Connor JC, McCusker RH, Strle K, Johnson RW, Dantzer R, Kelley KW. Regulation of IGF-I Function by Proinflammatory Cytokines: At the Interface of Immunology and Endocrinology. Cell Immunol 2008;252:91-110.
65. Rudman D. Growth hormone, body composition, and aging. J Am Geriatr Soc 1985;33:800-7.
66. Paudel SB, Dixit M, Neginskaya M, Nagaraj K, Pavlov E, Werner H, et al. Effects of GH/IGF on the Aging. Cell 2020;9:1384.
67. Klecha AJ, Genaro AM, Lysionek AE, Caro RA, Coluccia AG, Cremaschi GA. Experimental evidence pointing to the bidirectional interaction between the immune system and the thyroid axis. Int J Immunopharmaco 2000;22:491-500.
68. Pawlikowski M, Stepien H, Komorowski J. Hypothalamic-pituitary-thyroid axis and the immune system. Neuroimmunomodulation 1994;1:149-52.
69. Rettori V, Jurcovicova J, McCann SM. Central action of interleukin-1 in altering the release of TSH, growth hormone, and prolactin in the male rat. J Neurosci Res 1987;18:179-83.
70. Witzke O, Winterhagen T, Saller B, Roggenbuck U, Lehr
I, Philipp T, et al. Transient stimulatory effects on pituitary–thyroid axis in patients treated with interleukin-2. Thyroid 2001;11:665-70.
71. Kamilaris TC, DeBold CR, Johnson EO, Mamalaki E, Listwak SJ, Calogero AE, et al. Effects of short and long duration hypothyroidism and hyperthyroidism on the plasma adrenocorticotropinn and corticosterone responses to ovine corticotropin-releasing hormone in rats. Endocrinology 1991;128:2567-76.
72. Agarwal S, Agarwal SK. Endocrine changes in SARS-CoV-2 patients and lessons from SARS-CoV. Postgrad Med J 2020;96:412-6.
73. Eskandari F, Webster JI, Sternberg EM. Neural immune pathways and their connection to inflammatory diseases. Arthritis Res Ther 2003;5:251-65.
74. Wei L, Sun S, Xu CH, Zhang J, Xu Y, Zhu H, et al. Pathology of the thyroid in severe acute respiratory syndrome. Hum Pathol 2007;38:95-102.
75. Besedovsky H, del Rey A, Sorkin E, Dinarello CA. Immunoregulatory feedback between interleukin-1 and glucocorticoid hormones. Science 1986;233:652-4.
76. Tohei A, Watanabe G, Taya K. Hypersecretion of corticotrophin-releasing hormone and arginine vasopressin in hypothyroid male rats as estimated with push–pull perfusion. J Endocrinol 1998;156:395-400.
77. Prass K, Meisel C, Höflich C, Braun J, Halle E, Wolf T, et al. Stroke-induced immune deficiency promotes spontaneous bacterial infections and is mediated by sympathetic activation reversal by post stroke T helper cell type 1–like immune stimulation. J Exp Med 2003;198:725-36.
78. Silverman MN, Pearce BD, Biron CA, Miller AH. Immune Modulation of the Hypothalamic-Pituitary-Adrenal (HPA) Axis during Viral Infection. Viral Immunol 2005;18:41-78.
79. Grebe KM, Takeda K, Hickman HD, Bailey LA, Embry CA, Bennink RJ, et al. Sympathetic nervous system increases pro inflammatory cytokines and exacerbates influenza A virus pathogenesis. J Immunol 2010;184:540-4.
80. Scheiermann C, Kunisaki Y, Lucas D, Chow A, Jang JE, Zhang D, et al. Adrenergic nerves govern circadian leukocyte recruitment to tissues. Immunity 2012;37:290-301.
81. Nakai A, Hayano Y, Furuta F, Noda M, Suzuki K. Control of lymphocyte egress from lymph nodes through beta2-adrenergic receptors. J Exp Med 2014;211:2583-98.
82. Fana X, Wang Y. β2 adrenergic receptor on T lymphocytes and its clinical implications. Prog Nat Sci 2008;9;17-23.
83. Marino F, Cosentino M. Adrenergic modulation ofimmune cells: an update. Amino Acids 2013;45:55-71.
84. Zoukos Y, Leonard JP, Thomaides T, Thompson AJ, Cuzner ML. beta-Adrenergic receptor density and function of peripheral blood mononuclear cells are increased in multiple sclerosis: a regulatory role for cortisol and interleukin-1. Ann Neurol 1992;31:657-62.
85. Wahle M, Kolker S, Krause A, Burmester GR, Baerwald CG. Impaired catecholaminergic signalling of B lymphocytes in patients with chronic rheumatic diseases. Ann Rheum Dis 2001;60:505-10.
86. Miller LE, Justen HP, Scholmerich J, Straub RH. The loss of sympathetic nerve fibers in the synovial tissue of patients with rheumatoid arthritis is accompanied by increased norepinephrine release from synovial macrophages. FASEB J 2000;14:2097-107.
87. Pereira da Silva JA, Carmo-Fonseca M. Peptide containing nerves in human synovium: immunohistochemical evidence for decreased innervation in rheumatoid arthritis. J Rheumatol 1990;17:1592-9.
88. Gonzalez H, Hagerling C, Werb Z. Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev 2018;32:1267-84.
89. Kerage D, Sloan EK, Mattarollo SR, McCombeet PA. Interaction of neurotransmitters and neurochemicals with lymphocytes. J Neuroimmun 2019;332:99-111.
90. Koff WC, Fann AV, Dunegan MA, Lachman LB. Catecholamine-induced suppression of interleukin-1 production. Lymphokine Res 1986;5:239-47.
91. Chouaib S, Welte K, Mertelsmann R, Dupont B. Prostaglandin E2 acts at two distinct pathways of T lymphocyte activation: inhibition of interleukin 2 production and down-regulation of transferrin receptor expression. J Immunol 1985;135:1172-9.
92. Elenkov IJ, Papanicolaou DA, Wilder RL, Chrousos GP. Modulatory effects of glucocorticoids and catecholamines on human interleukin-12 and interleukin-10 production: clinical implications. Proc Assoc Am Physicians 1996;108:374-81.
93. Elenkov IJ, Hasko G, Kovacs KJ, Vizi ES. Modulation of lipopolysaccharide-induced tumor necrosis factor-alpha production by selective alpha- and beta-adrenergic drugs in mice. J Neuroimmunol 1995;61:123-31.
94. Sanders VM, Baker RA, Ramer-Quinn DS, Kasprowicz DJ, Fuchs BA, Street NE. Differential expression of the beta2-adrenergic receptor by Th1 and Th2 clones: implications for cytokine production and B cell help. J Immunol 1997;158:4200-10.
95. Suberville S, Bellocq A, Fouqueray B, Philippe C, Lantz O, Perez J, et al. Regulation of interleukin-10 production by beta-adrenergic agonists. Eur J Immunol 1996;26:2601-5.
96. DeRijk RH, Boelen A, Tilders FJ, Berkenbosch F. Induction of plasma interleukin-6 by circulating adrenaline in the rat. Psychoneuroendocrinology 1994;19:155-63.
97. Fisher SA, Absher M. Norepinephrine and ANG II stimulate secretion of TGF-beta by neonatal rat cardiac fibroblasts in vitro. Am J Physiol 1995;268:C910-7.
98. Linden A. Increased interleukin-8 release by beta-adrenoceptor activation in human transformed bronchial epithelial cells. Br J Pharmacol 1996;119:402-6.
99. Mcnamee EN, Ryan KM, Griffin EW, González-Reyes ER, Ryan JK Harkin A, Harkin A, et al. Noradrenaline acting at central??-adrenoceptors induces interleukin-10 and suppressor of cytokine signaling-3 expression in rat brain: Implications for neurodegeneration. Brain Behav Immun 2010;24:660-71.
100. Van Der Poll T, Lowry SF. Epinephrine inhibits endotoxin-induced IL-1β production: roles of tumor necrosis factor-α and IL-10. Regul Integrat Physio 1997;273:R1885-90.
101. Iwaszkiewicz KS, Schneider JJ, Hua S. Targeting peripheral opioid receptors to promote analgesic and anti-inflammatory actions. Front Pharmacol 2013;4:132.
102. Wybran J, Appelboom T, Famaey JP, Govaerts A. Suggestive evidence for receptors for morphine and methionine- enkephalin on normal human blood T lymphocytes. J Immunol 1979;123:1068-70.
103. Sibinga NE, Goldstein A. Opioid peptides and opioid receptors in cells of the immune system. Ann Rev Immunol 1988;6:219-49.
104. Borner C, Lanciotti S, Koch T, Höllt V, Kraus J. μ opioid receptor agonist-selective regulation of interleukin-4 in T lymphocytes. J Neuroimmunol 2013;263:35-42.
105. Campana G, Sarti D, Spampinato S, Raffaeli W. Long-term intrathecal morphine and bupivacaine upregulate MOR gene expression in lymphocytes. Inter Immunopharmacol 2010;10:1149-52.
106. Ohmori H, Fujii K, Sasahira T, Luo Y, Isobe M, Tatsumoto N, et al. Methionine-enkephalin secreted by human colorectal cancer cells suppresses T lymphocytes. Cancer Sci 2009;100:497-502.
107. Guan L, Eisenstein TK, Adler MW, Rojers TJ. Inhibition of T cell super antigen responses following treatment with the kappa-opioid agonist U50, 488H. J Neuroimmunol 1997;75:163-8.
108. Dantzer R. Cytokine-induced sickness behavior. Mechanisms and implications. Ann N Y Acad Sci 2001;933:222-234.
109. Liberman AC, Budziñski ML, Sokn C, Gobbini RP, Steininger A, Arzt E. Regulatory and Mechanistic Actions of Glucocorticoids on T and Inflammatory Cells. Front Endocrinol (Lausanne) 2018;9:235.
110. Brattsandi R, Linden M. Cytokine modulation by glucocorticoids: mechanisn1s and actions in cellular studies. Aliment Pharmacol Ther 1996;10:81-90.
111. Suda T, Tozawa F, Ushiyama T, Sumitomo T, Yamada M, Demura H. Interleukin-1 stimulates corticotropin-releasing factor gene expression in rat hypothalamus. Endocrinology 1990;126:1223-8.
112. Lyson K, McCann SM. The effect of interleukin-6 on pituitary hormone release in vivo and in vitro. Neuroendocrinology 1991;54:262-6.
113. Sharp BM, Matta SG, Peterson PK, Newton R, Chao C, Mcallen K. Tumor necrosis factor-alpha is a potent ACTH secretagogue: comparison to interleukin-1 beta. Endocrinology 1989;124:3131-3.
114. Lightman SL, Windle RJ, Ma XM, Harbus MS, Shaanks MN. Hypothalamic–pituitary–adrenal function. Arch Physiol Biochem 2002;110:90-3.
115. Wilder RL, Griffiths MM, Cannon GW, Capsi R, Remmers FE. Susceptibility to autoimmune disease and drug addiction in inbred rats. Are there mechanistic factors in common related to abnormalities in hypothalamic–pituitary–adrenal axis and stress response function? Ann N Y Acad Sci 2000;917:784-96.
116. Sarlis NJ, Chowdrey HS, Stephanou A, Lightman SL. Chronic activation of the hypothalamo-pituitary-adrenal axis and loss of circadian rhythm during adjuvant-induced arthritis in the rat. Endocrinology 1992;130:1775-9.
117. Harbuz MS, Rees RG, Lightman SL. HPA axis responses to acute stress and adrenalectomy during adjuvant-induced arthritis in the rat. Am J Physiol 1993;264:R179-85.
118. Harbuz MS, Windle RJ, Jessop DS, Renshaw D, Ingram CD, Lightman SL. Differential effects of psychological and immunological challenge on the hypothalamo-pituitary-adrenal axis function in adjuvant-induced arthritis. Ann N Y Acad Sci 1999;876:43-52.
119. Perretti M, Mugridge KG, Becherucci C, Parente L. Evidence that interleukin-1 and lipoxygenase metabolites mediate the lethal effect of complete Freund's adjuvant in adrenalectomies rats. Lymphokine Cytokine Res 1991;10,239-43.
120. Clark AR. Anti-inflammatory functions of glucocorticoid-induced genes. Mol Cell Endocrinol 2007;275:79-97.
121. Chen L, Finnerty C, Gustafson WC, Bush RC, Chi P, Guo H, et al. Genomic Analysis of glucocorticoid-regulated promoters in murine T-lymphoma cells. Recent Prog Horm Res 2003;58:155-74.
122. Belvisi MG, Wicks SL, Battram CH, Redford JE, Woodman P, Brown TJ, et al. Therapeutic benefit of a dissociated glucocorticoid and the relevance of in vitro
separation of transrepression from transactivation activity. J Immunol 2001;166:1975-82.
123. Schäcke H, Schottelius A, Döcke WD, Strehlke P, Jaroch S, Schmees N, et al. Dissociation of transactivation from transrepression by a selective glucocorticoid receptor agonist leads to separation of therapeutic effects from side effects. Proc Natl Acad Sci U S A 2004;101:227-32.
124. Ing NH. Steroid hormones regulate gene expression posttranscriptionally by altering the stabilities of messenger RNAs. Biol Reprod 2005;72:1290-6.
125. Cain DW, Cidlowski JA. Immune regulation by glucocorticoids. Nat Rev Immunol 2017;17:233-47.
126. Visser J, van Boxel-Dezaire A, Methorst D, Brunt T, de Kloet ER, Nagelkerken L. Differential regulation of interleukin-10 (IL-10) and IL-12 by glucocorticoids in vitro. Blood 1998;91:4255-64.
127. Ehrchen JM, Roth J, Barczyk-Kahlert K. More than suppression: Glucocorticoid action on monocytes and macrophages. Front Immunol 2019;10:2028.
128. Ghosh S, May MJ, Kopp EB. NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Ann Rev Immunol 1998;16:225-60.
129. Xiao G, Harhaj EW, Sun SC. NF-kappaB-inducing kinase regulates the processing of NF-kappaB2 p100. Mol Cell 2001;7:401-9.
130. Rothschild DE, McDaniel DK, Ringel-Scaia VM, Allen CI. Modulating Inflammation through the Negative Regulation of NF-κB Signaling. 2018;10. (Online Ahead of Print.)
131. Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K, et al. TRBP recruits the Dicer complex to Ago2 for micro RNA processing and gene silencing. Nature 2005;436:740-4.
132. Kircheis R, Haasbach E, Lueftenegger D, Heyken WT, Ocker M, Planz O. NF-κB Pathway as a Potential Target for Treatment of Critical Stage COVID-19 Patients. Front. Immunol 2020;11:598444.
133. Auphan N, DiDonato JD, Rosette C, Helmberg A, Karin
M. Immunosuppression by glucocorticoids: inhibition of NF-kappa B activity through induction of I kappa B synthesis. Science 1995;270:286-90.
134. Klement JF, Rice NR, Car BD, Abbondanzo SJ, Powers GD, Bhatt PH et al. IkappaBalpha deficiency results in a sustained NF-kappaB response and severe widespread dermatitis in mice. Mol Cell Biol 1996;16:2341-9.
135. Tang Y, Liu J, Zhang D, Xu Z, Ji J, Wen C, et al. Cytokine Storm in COVID-19: The Current Evidence and Treatment Strategies. Front Immunol 2020;11:1708.
136. Luo Ch, Ma LI, Liu HM, LiaoW, Xu RC, Ci ZM, et al. Research Progress on Main Symptoms of Novel Coronavirus Pneumonia Improved by Traditional ChineseMedicine. Front Pharmacol 2020;11:556885.
137. Nance DM, Sanders VM. Autonomic innervation and regulation of the immune system (1987–2007). Brain Behav Immun 2007;21:736-45.
138. Grailer JJ, Haggadone MD, Sarma JV, Zetoune SF, Ward AP. Induction of M2 regulatory macrophages through the beta-adrenergic receptor with protection during endotoxemia and acute lung injury. J Innate Immun 2014;6:607-18.
139. Stanojevic S, Dimitrijevic M, Kustrimovic N, Mitic K, Vujic V, Leposavic G. Adrenal hormone deprivation affects macrophage catecholamine metabolism and beta2-adrenoceptor density, but not propranolol stimulation of tumour necrosis factor-alpha production. Exp Physiol 2013;98:665-78.
140. Kumar A, Maitra S, Khanna P, Baidya KD. Clonidine for management of chronic pain: A brief review of the current evidence. Saudi J Anaesth 2014;8:92-6.
141. Tofighi RA, Hassanzad A, Aryaie M. Oral clonidine premedication reduces postoperative pain in children. Euro J Exp Bio 2014;4:102-5.
142. Wrzosek A, Woron J, Dobrogowski J, Jakowicka-Wordliczek J, Wordliczek J. Topical clonidine for neuropathic pain. Cochrane Database Syst Rev 2015;8:CD010967.
143. Veith RC, Best JD, Halte JB. Dose-dependent suppression of norepinephrine appearance rate in plasma
by ClonidineClonidine in man. J Clin Endocrinol Metab 1984;59:151-5.
144. Mitchell A, Bührmann S, OpazoSaez A, Rushentsova U, Schäfers FR, Philipp T, et al. Clonidine lowers blood pressure by reducing vascular resistance and cardiac output in young, healthy males. Cardiovasc Drugs Ther 2005;19:49-55.
145. Bexis S, Docherty JR. Role of α2A-adrenoceptors in the effects of MDMA on body temperature in the mouse. Br J Pharmacol 2005;146:1-6.
146. Hall JE, Uhrich TU, Ebert TJ. Sedative, analgesic and cognitive effects of clonidine infusions in humans. Br J Anaesth 2001;86:5-11.
147. Zangeneh FZ, Naghizadeh MM, Abedinia N, Haghollahi F, Hezarehei D. Psychological Signs in Patients with Polycystic Ovary Syndrome. J Family Reprod Health 2012;6:145-51.
148. Zangeneh FZ. Polycystic Ovary Syndrome and Sympathoexcitation: Management of Stress and Lifestyle. J Biol Today's World 2017;6:146-54.
149. Zangeneh FZ, Bagheri N, Shoushtari MS, Naghizadeh MM. Expression of ADR-α1, 2 and ADR-β2 in cumuluscell culture of infertile women with polycysticovary syndrome and poor responder who area candidate for IVF: the novel strategic role ofclonidine in this expression. J Recept Signal Transduct Res 2020;43:263-72.
Files
IssueVol 60 No 9 (2022) QRcode
SectionReview Article(s)
DOI https://doi.org/10.18502/acta.v60i9.11094
Keywords
Coronavirus disease 2019 (COVID-19) Stress Psycho-neuroendocrine-immune axis Glucocorticoids Noradrenaline

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Zafari Zangeneh F, Sarmast Shoushtari M. The Significant Role of the Sympathetic Nervous System in Hospitalization and Death of Patients With COVID-19: Psycho-Neuroendocrine-Immune Aspect of Stress. Acta Med Iran. 2022;60(9):532-548.