Original Article

Molecular Docking and Simulation Approach to Study the Inhibitory Effect of Rhamnolipid on Biofilm Producing Proteins in E. coli K12

Abstract

Microbes have a proclivity for binding to cell surfaces and forming biofilms. The act of creating biofilms is the microbe’s social activity while they are under stress. In humans, this form of cell aggregation leads to biofilm, which often leads to an infection. Despite their ability to form adhesion to the cell surface, biofilm has also drawn attention due to its involvement in chronic disorders. Accumulation of biofilm leads to a serious health concern showing high resistance to antibiotics. In order to address this concern, there is a desperate need to find out natural bioproducts like biosurfactants which could be an alternative to synthetic compounds. In the current study, the inhibitory effect of rhamnolipid against E. coli k-12 proteins that are involved in biofilm formation was studied through various computational approaches. In the molecular docking approach, the interaction between rhamnolipid and targeted proteins has been recorded. Rhamnolipid interacts with pgaC with the total highest energy of -8.91 kcal/mol, indicating a tight ligand-protein interaction. Further, to validate the interaction, a 10-ns molecular dynamics simulation was performed for pgaC and with rhamnolipid bound complex. The stability of biosurfactant and biofilm-producing protein was investigated using the RMSD, RMSF, Rg, and SASA plots. As a comparison to only protein, a complex Binding with rhamnolipid shows a stable RMSD value with minimal RMSF and Rg values, which indicates the tight interaction between rhamnolipid and pgaC. This could be a leading novel in silico approach to studying the inhibitory effect of biosurfactants against biofilm formation proteins.

1. Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999 May 21;284(5418):1318-22.
2. Rahman, P.K. and E. Gakpe, 2008. Production, characterisation and applications of biosurfactants-review. Biotechnology.
3. Pradhan, A.K., N. Pradhan, G. Mall, H.T. Panda, L.B. Sukla, P.K. Panda and B.K. Mishra, 2013. Application of lipopeptide biosurfactant isolated from a halophile: Bacillus tequilensis ch for inhibition of biofilm. Applied biochemistry and biotechnology, 171(6): 1362-1375.
4. Mnif I, Ellouz-Chaabouni S, Ghribi D. Glycolipid biosurfactants, main classes, functional properties and related potential applications in environmental biotechnology. Journal of Polymers and the Environment. 2018 May;26(5):2192-206.
5. Inès M, Dhouha G. Glycolipid biosurfactants: Potential related biomedical and biotechnological applications. Carbohydrate research. 2015 Oct 30;416:59-69.
6. Fux CA, Stoodley P, Hall-Stoodley L, Costerton JW. Bacterial biofilms: a diagnostic and therapeutic challenge. Expert review of anti-infective therapy. 2003 Dec 1;1(4):667-83.
7. Lukjancenko O, Wassenaar TM, Ussery DW. Comparison of 61 sequenced Escherichia coli genomes. Microbial ecology. 2010 Nov;60(4):708-20.
8. Kaplan JÁ. Biofilm dispersal: mechanisms, clinical implications, and potential therapeutic uses. Journal of dental research. 2010 Mar;89(3):205-18.
9. Lord, D.M., A.U. Baran, T.K. Wood, W. Peti and R. Page, 2014. Bdca, a protein important for escherichia coli biofilm dispersal, is a short-chain dehydrogenase/reductase that binds specifically to nadph. PloS one, 9(9): e105751
10. Lee J, Page R, García-Contreras R, Palermino JM, Zhang XS, Doshi O, Wood TK, Peti W. Structure and function of the Escherichia coli protein YmgB: a protein critical for biofilm formation and acid-resistance. Journal of molecular biology. 2007 Oct 12;373(1):11-26.
11. Riley, M., T. Abe, M.B. Arnaud, M.K. Berlyn, F.R. Blattner, R.R. Chaudhuri, J.D. Glasner, T. Horiuchi, I.M. Keseler and T. Kosuge, 2006. Escherichia coli k-12: A cooperatively developed annotation snapshot—2005. Nucleic acids research, 34(1): 1-9.
12. Zhang, X.-S., R. García-Contreras and T.K. Wood, 2008. Escherichia coli transcription factor yncc (mcbr) regulates colanic acid and biofilm formation by repressing expression of periplasmic protein ybim (mcba). The ISME journal, 2(6): 615-631
13. Tuckerman, J.R., G. Gonzalez, E.H. Sousa, X. Wan, J.A. Saito, M. Alam and M.-A. Gilles-Gonzalez, 2009. An oxygen-sensing diguanylate cyclase and phosphodiesterase couple for c-di-gmp control. Biochemistry, 48(41): 9764-9774.
14. Wang, X., J.F. Preston III and T. Romeo. The pgaabcd locus of escherichia coli promotes the synthesis of a polysaccharide adhesin required for biofilm formation. Journal of bacteriology. 2004 186(9): 2724-2734.
15. Wang, X., Y. Kim, S.H. Hong, Q. Ma, B.L. Brown, M. Pu, A.M. Tarone, M.J. Benedik, W. Peti and R. Page, 2011. Antitoxin mqsa helps mediate the bacterial general stress response. Nature chemical biology, 7(6): 359-366.
16. Kim, J.-S., Y.J. Kim, S. Seo, M.-J. Seong and K. Lee. Functional role of bdm during flagella biogenesis in escherichia coli. 2015 Current microbiology, 70(3): 369-373.
17. Ogasawara, H., K. Yamamoto and A. Ishihama, 2011. Role of the biofilm master regulator csgd in cross-regulation between biofilm formation and flagellar synthesis. Journal of bacteriology, 193(10): 2587-2597.
18. Itoh, Y., J.D. Rice, C. Goller, A. Pannuri, J. Taylor, J. Meisner, T.J. Beveridge, J.F. Preston III and T. Romeo, 2008. Roles of pgaabcd genes in synthesis, modification, and export of the escherichia coli biofilm adhesin poly-β-1, 6-n-acetyl-d-glucosamine. Journal of bacteriology, 190(10): 3670-3680.
19. Szklarczyk, D., A. Santos, C. Von Mering, L.J. Jensen, P. Bork and M. Kuhn, 2016. Stitch 5: Augmenting protein–chemical interaction networks with tissue and affinity data. Nucleic acids research, 44(D1): D380-D384
20. Consortium, U., 2019. Uniprot: A worldwide hub of protein knowledge. Nucleic acids research, 47(D1): D506-D515.
21. Altschul, S.F., W. Gish, W. Miller, E.W. Myers and D.J. Lipman, 1990. Basic local alignment search tool. Journal of molecular biology, 215(3): 403-410.
22. Berman, H.M., T. Battistuz, T.N. Bhat, W.F. Bluhm, P.E. Bourne, K. Burkhardt, Z. Feng, G.L. Gilliland, L. Iype, S. Jain, P. Fagan, J. Marvin, D. Padilla, V. Ravichandran, B. Schneider, N. Thanki, H. Weissig, J.D. Westbrook and C. Zardecki, 2002. The protein data bank. Acta crystallographica. Section D, Biological crystallography, 58(Pt 6 No 1): 899-907. DOI 10.1107/s0907444902003451.
23. Kelley, L.A., S. Mezulis, C.M. Yates, M.N. Wass and M.J. Sternberg, 2015. The phyre2 web portal for protein modeling, prediction and analysis. Nature protocols, 10(6): 845-858.
24. Waese, J., J. Fan, A. Pasha, H. Yu, G. Fucile, R. Shi, M. Cumming, L.A. Kelley, M.J. Sternberg and V. Krishnakumar, 2017. Eplant: Visualizing and exploring multiple levels of data for hypothesis generation in plant biology. The Plant Cell, 29(8): 1806-1821.
25. Xu, D. and Y. Zhang, 2011. Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization. Biophysical journal, 101(10): 2525-2534.
26. Laskowski, R.A., J.A.C. Rullmann, M.W. MacArthur, R. Kaptein and J.M. Thornton, 1996. Aqua and procheck-nmr: Programs for checking the quality of protein structures solved by nmr. Journal of biomolecular NMR, 8(4): 477-486.
27. Kim, S., J. Chen, T. Cheng, A. Gindulyte, J. He, S. He, Q. Li, B.A. Shoemaker, P.A. Thiessen and B. Yu, 2019. Pubchem 2019 update: Improved access to chemical data. Nucleic acids research, 47(D1): D1102-D1109.
28. Todsen, W.L., 2014. Chemdoodle 6.0. Journal of Chemical Information and Modeling, 54(8): 2391-2393. Available from https://doi.org/10.1021/ci500438j. DOI 10.1021/ci500438j.
29. Balaji GL, Rajesh K, Priya R, Iniyavan P, Siva R, Vijayakumar V. Ultrasound-promoted synthesis, biological evaluation and molecular docking of novel 7-(2-chloroquinolin-4-yloxy)-4-methyl-2H-chromen-2-one derivatives. Medicinal Chemistry Research. 2013 Jul;22(7):3185-92.
30. Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. Journal of cheminformatics. 2012 Dec;4(1):1-7.
31. Morris, G.M., R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell and A.J. Olson, 2009. Autodock4 and autodocktools4: Automated docking with selective receptor flexibility. J Comput Chem, 30(16): 2785-2791. DOI 10.1002/jcc.21256.
32. Pettersen, E.F., T.D. Goddard, C.C. Huang, G.S. Couch, D.M. Greenblatt, E.C. Meng and T.E. Ferrin, 2004. Ucsf chimera--a visualization system for exploratory research and analysis. J Comput Chem, 25(13): 1605-1612. DOI 10.1002/jcc.20084.
33. Hemalatha, C.N. and V.A. Muthkumar, 2018. Application of 3d qsar and docking studies in optimization of perylene diimides as anti cancer agent. Indian J Pharm Educ Res, 52: 666-675.
34. Desai VH, Kumar SP, Pandya HA, Solanki HA, 2015 Receptor-guided de novodesign of dengue envelope protein inhibitors. Appl Biochem Biotechnol;177:861–78, http://dx.doi.org/10.1007/s12010-015-1784-y.
35. Soreghan, B., J. Kosmoski and C. Glabe, 1994. Surfactant properties of alzheimer's a beta peptides and the mechanism of amyloid aggregation. Journal of Biological Chemistry, 269(46): 28551-28554
36. Reva, B.A., A.V. Finkelstein and J. Skolnick, 1998. What is the probability of a chance prediction of a protein structure with an rmsd of 6 å? Folding and Design, 3(2): 141-147.
Files
IssueVol 60 No 12 (2022) QRcode
SectionOriginal Article(s)
DOI https://doi.org/10.18502/acta.v60i12.11825
Keywords
Rhamnolipid Biofilm In silico Glycolipid Interaction K-12 strain Groningen machine for chemical simulations (GROMACS) 5.1 Auto dock vina

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Das RP, Sahoo B, Arakha M, Pradhan AK. Molecular Docking and Simulation Approach to Study the Inhibitory Effect of Rhamnolipid on Biofilm Producing Proteins in E. coli K12. Acta Med Iran. 2023;60(12):731-741.