Mycobacterium Tuberculosis Infection: Participation of TH1, TH2, TH17 and Regulatory T Cells in the Immune Response

  • Gerardo Fernando Fernández Soto Nursery Career, School of Health Sciences, Ambato Technical University, Ambato, Ecuador. AND Early Stimulation Career, School of Health Sciences, Ambato Technical University, Ambato, Ecuador. AND Pediatric Service of the Ambato General Hospital, Ambato, Ecuador.
  • Nereida Valero Cedeño Nursery Career, School of Health Sciences, Ambato Technical University, Ambato, Ecuador.
  • Carolina Arráiz de Fernández Nursery Career, School of Health Sciences, Ambato Technical University, Ambato, Ecuador.
  • Patricia Paredes Lascano Medicine Career, School of Health Sciences, Ambato Technical University, Ambato, Ecuador. AND Pediatric Service of the Ambato General Hospital, Ambato, Ecuador.
  • Miriam Fernández Nieto Nursery Career, School of Health Sciences, Ambato Technical University, Ambato, Ecuador.
  • María Teresa Peñaherrera Ron Nursery Career, School of Health Sciences, Ambato Technical University, Ambato, Ecuador.
Keywords: Mycobacterium tuberculosis, Virulence, Host genetic, Immune response, Cytokines

Abstract

Mycobacterium tuberculosis, the etiologic agent of Tuberculosis, is a pathogen that is widely distributed geographically. Tuberculosis is classified as a granulomatous inflammatory condition where effector cells accumulate at the site of mycobacterial infection to form the characteristic tubercle. Regulating proteins of Th1 and Th17 cells participate  in the formation of Mycobacterium-induced granuloma. The predominance of Th2 phenotype cytokines increases the severity of Tuberculosis. Treg cells are increased in patients with active Tuberculosis but decrease with anti-Tuberculosis treatment. The increment of these cells causes down-regulation of adaptive immune response facilitating the persistence of the bacterial infection. Mycobacterium tuberculosis-induced Treg cells to secrete cytokines that inhibit the immune response. This has been considered an important evasion mechanism although it is not the only that intervenes. The evolution of the Mycobacterium tuberculosis infection will depend on the cytokines' network that traduces pathological change in cells and tissues which explain the clinical manifestations existing in affected patients.

References

Romero Adrián TB, Leal Montiel J, Fernández G, Valecillo A. Role of cytokines and other factors involved in the Mycobacterium tuberculosis infection. World J Immunology. 2015;27:16-50

Frieden TR, Sterling TR, Munsiff SS. Tuberculosis. Lancet. 2003; 362: 887-99

Wan YY, Flavell RA. How diverse- CD4 effector Tcells and their functions. J Mol Cell Biol. 2009;1:20-36

Rozot V, Vigano S, Mazza-Stalder J, Idrizi E, Day CL, Perreau M, et al. Mycobacterium tuberculosis-specific CD8+ T cells are functionally and phenotypically different between latent infection and active disease. Eur J Immunol. 2013; 43(6):1568-77.

Sasindran SJ, Torrelles JB. Mycobacterium Tuberculosis Infection and Inflammation: what is Beneficial for the Host and for the Bacterium? . Frontiers in Microbiology. 2011; 2:2.

Moreira-Teixeira L, Sousa J, McNab FW, et al. Type I IFN Inhibits Alternative Macrophage Activation during Mycobacterium tuberculosis Infection and Leads to Enhanced Protection in the Absence of IFN-γ Signaling. The Journal of Immunology Author Choice. 2016; 197(12):4714-4726.

Bell LCK, Pollara G, Pascoe M, Gillian S. Tomlinson, Rannakoe J., et al. In Vivo Molecular Dissection of the Effects of HIV-1 in Active Tuberculosis. Fortune SM, ed. PLoS Pathogens. 2016; 12(3):e1005469.

Senait Ashenafi, Getachew Aderaye, Amsalu Bekele, Martha Zewdie, Getachew Aseffa, Anh Thu Nguyen Hoang, et al. Progression of clinical tuberculosis is associated with a Th2 immune response signature in combination with elevated levels of SOCS3. Clinical Immunology.2014; 151 (2):84-89

Amelio P, Portevin D, Reither K, Mhimbira F, Mpina M, Tumbo A, et al. Mixed Th1 and Th2 Mycobacterium tuberculosis-specific CD4 T cell responses in patients with active pulmonary tuberculosis from Tanzania. Babu S, ed. PLoS Neglected Tropical Diseases. 2017; 11(7):e0005817.

Freeman S, Post FA, Bekker LG, Harbacheuski R, Steyn LM, Ryffel B, et al. tuberculosis H37Ra and H37Rv differential growth and cytokine/chemokine induction in murine macrophages in vitro. J. Interferon Cytokine Res. 2006;26:27-33

Surewicz K, Aung H, Kanost RA, Jones L, Hejal R, Toossi Z. The differential interaction of p38 MAP kinase and tumor necrosis factor-alpha in human alveolar macrophages and monocytes induced by Mycobacterium tuberculosis. Cell Immunol. 2004;228:34-41

Sun Y J, Lim T K, Ong A K, Ho B C, Seah G T, Paton N I. Tuberculosis associated with Mycobacterium tuberculosis Beijing and non-Beijing genotypes: a clinical and immunological comparison. BMC Infect Dis. 2006;6:105

Romero Adrián TB, Leal Montiel J, Monsalve-Castillo F, Mengual Moreno E, Ernesto García, McGregor E, et al. Helicobacter pylori: Bacterial factors and the role of cytokines in the immune response. Curr Microbiol. 2010;60:143-155

George PJ, Anuradha R, Kumaran PP, Chandrasekaran V, Nutman TB, Babu S. Modulation of mycobacterial-specific Th1 and Th17 cells in latent tuberculosis by coincident hookworm infection. J Immunol. 2013;190:5161-5168

Zuñiga J, Torres García D, Santos Mendoza T, Rodríguez Reyna TS, Granados J, Yunis EJ. Cellular and humoral mechanisms involved in the control of tuberculosis. Clin Dev Immunol. 2012;2012:193923

Wang F, Mao L, Hou H, Wu S, Huang M, Yin B, et al. The source of Mycobacterium tuberculosis-specific IFN-γ production in peripheral blood mononuclear cells of TB patients. Int Immunopharmacol. 2016; 32:39-45.

Pollock KM, Montamat-Sicotte DJ, Grass L, Cooke GS, Kapembwa MS, Kon OM, et al. PD-1 Expression and Cytokine Secretion Profiles of Mycobacterium tuberculosis-Specific CD4+ T-Cell Subsets; Potential Correlates of Containment in HIV-TB Co-Infection. PLoS One. 2016. 12; 11(1):e0146905.

Winslow GM, Cooper A, Reiley W, Chatterjee M, Woodland DL. Early T-cell responses in tuberculosis immunity. Immunological reviews.2008; 225:10.1111/j. 1600-065X.2008.00693.

Herzmann C, Ernst M, Ehlers S, Stenger S, Maertzdorf J, Sotgiu G, Lange C. Increased frequencies of pulmonary regulatory T-cells in latent Mycobacterium tuberculosis infection. Eur Respir J. 2012; 40(6):1450-7.

Ribeiro-Rodrigues R, Resende Co T, Rojas R, Z Toossi, R Dietze, W H Boomet, et al. A role for CD4+CD25+ T cells in regulation of the immune response during human tuberculosis. Clinical and Experimental Immunology. 2006; 144(1):25-34.

Diniz LM, Zandonade E, Dietze R, Pereira FE, Ribeiro-Rodrigues R. Short report: do intestinal nematodes increase the risk for multibacillary leprosy? Am J Trop Med Hyg. 2001;65:852-854

Arango Duque G, Descoteaux A. Macrophage Cytokines: Involvement in Immunity and Infectious Diseases. Frontiers in Immunology. 2014; 5:491.

Pinheiro RO, de Oliveira EB, Dos Santos G, Sperandio da Silva GM, de Andrade Silva BJ, et al. Immunosuppressive mechanisms in multi-drug-resistant tuberculosis and non-tuberculous mycobacteria patients. Clin Exp Immunol. 2013; 171(2):210-9.

Hossain MM, Norazmi M-N. Pattern Recognition Receptors and Cytokines in Mycobacterium tuberculosis Infection-The Double-Edged Sword?. Bio Med Research International. 2013; 2013:179174.

Redford PS, Murray PJ, O'Garra A. The role of IL-10 in immune regulation during M. tuberculosis infection. Mucosal Immunol. 2011; 4(3):261-70.

Kumar NP, Anuradha R, Suresh R, Ganesh R, Shankar J, Kumaraswami V. Suppressed type 1, type 2, and type 17 cytokine responses in active tuberculosis in children. Clin Vaccine Immunol. 2011;18:1856-64

Weiner H.L. Induction and mechanism of action of transforming growth factor-β-secreting Th3 regulatory cells. Immunol Rev. 2001;182:207-214

Vieira PL, Christensen JR, Minaee S, O'Neill EJ, Barrat FJ, Boonstra A, , et al. IL-10-secreting regulatory T cells do not express Foxp3 but have comparable regulatory function to naturally occurring CD4 + CD25+ regulatory T cells. J Immunol 2004;172:5986-5993

Singh A, Dey AB, Mohan A, Sharma PK, Mitra DK. Foxp3+ Regulatory T Cells among Tuberculosis Patients: Impact on Prognosis and Restoration of Antigen Specific IFN-γ Producing T Cells. PLoS ONE. 2012;7:e44728

Quinn KM, McHugh RS, Rich FH, Goldsack LM, de Lisle GW, Buddle BM , et al. Inactivation of CD4+ CD25+ regulatory T cells during early mycobacterial infection increases cytokine production but does not affect pathogen load. Immunol Cell Bio. 2006;184:467-474

Scott-Browne JP, Shafiani S, Tucker-Heard G, Ishida-Tsubota K, Fontenot DJ, Rudensky AY, et al. Expansion and function of Foxp3-expressing T regulatory cells during tuberculosis. J Exp Med. 2007;204:2159-2169

Ribeiro-Rodrigues R, Resende Co T, Rojas R, Toossi Z, Dietze R, Boom WH, et al. A role for CD4+CD25+ T cells in regulation of the immune response during human tuberculosis. Clin Exp Immunol. 2006;144:25-44

Larson RP, Shafiani S, Urdahl KB. Foxp3(+) regulatory T cells in tuberculosis. Adv Exp Med Biol. 2013;783:165-180

Romero-Adrián T, Leal- Montiel J. Helicobacter pylori infection: Regulatory T cells and participation in the Regulatory T cell frequency and modulation of IFN-gamma and IL-17 in active and latent tuberculosis. Tuberculosis. immune response. Jundishapur J Microbiol. 2013;6:e5183

Marin ND, París SC, Vélez VM, Rojas CA, Rojas M, García LF. 2010;90:252-261

De Almeida AS, Fiske CT, Sterling TR, Kalams SA. Increased frequency of regulatory T cells and T lymphocyte activation in persons with previously treated extrapulmonary tuberculosis. Clin Vaccine Immunol. 2012;19:45-52

Rahman S, Gudetta B, Fink J, Granath A, Ashenafi S, Aseffa A, et al. Compartmentalization of immune responses in human tuberculosis: few CD8+ effector T cells but elevated levels of FoxP3+ regulatory T cells in the granulomatous lesions. Am J Pathol. 2009;174:2211-2224

Russell D.G. Who puts the tubercle in tuberculosis?. Nat Rev Microbiol. 2007;5:39-47

Korb VC, Chuturgoon AA, Moodley D. Mycobacterium tuberculosis: Manipulator of Protective Immunity. Int J Mol Sci. 2016; 17:131.

Cumming BM, Rahman MA, Lamprecht DA, Rohde KH, Saini V, Adamson JH, et al. Mycobacterium tuberculosis arrests host cycle at the G1/S transition to establish long term infection. PLoS Pathog. 2017; 13:e1006389.

Ising M, Holsboer F. Genetics of stress response and stress-related disorders. Dialogues Clin Neurosci 2006;8:433-44.

Ferguson LR, Shelling AN, Browning BL, Huebner C, Petermann I Genes, diet and inflammatory bowel disease. Mutat Res 2007;622:70-83.

Abel L, El-Baghdadi J, Bousfiha AA, Casanova J-L, Schurr E. Human genetics of tuberculosis: a long and winding road. Philos Trans R Soc Lond B Biol Sci 2014;369:20130428.

Schurr E. The contribution of host genetics to tuberculosis pathogenesis. Kekkaku J 2011;86:17-28.

Jepson A, Fowler A, Banya W, Singh M, Bennett S, Whittle H, Hill A. Genetic regulation of acquired immune responses to antigens of Mycobacterium tuberculosis: a study of twins in West Africa. Infect Immun

;69:3989-94.

Newport MJ, Goetghebuer T, Weiss HA, Whittle H, Siegrist C, Marchant A. Genetic regulation of immune responses to vaccines in early life. Genes Immun 2004;5:122-9.

Kimman T, Janssen R, Hoebee B. Future prospects in respiratory syncytial virus genetics. Future Virol 2006;1:483-92.

McShane H. Susceptibility to tuberculosis – the importance of the pathogen as well as the host. Clin Exp Immunol 2003;133:20-1.

Al-Muhsen S, Casanova J. The genetic heterogeneity of Mendelian susceptibility to mycobacterial diseases. J Allergy Clin Immun 2008;122:1043-51.

Lombard Z, Dalton D, Venter P, Williams R, Bornman L. Association of HLA-DR, -DQ, and vitamin D receptor alleles and haplotypes with tuberculosis in the Venda of South Africa. Hum Immunol 2006;67:643-54.

Wamala D, Buteme HK, Kirimunda S, Kallenius G, Joloba M. Association between human leukocyte antigen class II and pulmonary tuberculosis due to mycobacterium tuberculosis in Uganda. BMC Infect Dis 2016;16:23.

Fernández-Mestre M, Villasmil Á, Takiff H, Fuentes Alcalá Z. NRAMP1 and VDR Gene Polymorphisms in Susceptibility to Tuberculosis in Venezuelan Population. Dis Markers 2015;2015:860628.

Vejbaesya S, Chierakul N, Luangtrakool K, Srinak D, Stephens H. Associations of HLA class II alleles with pulmonary tuberculosis in Thais. Eur J Immunogenet 2002;29:431-4.

Qu H-Q, Fisher-Hoch SP, McCormick JB. Knowledge Gaining by Human Genetic Studies on Tuberculosis Susceptibility. J Hum Genet 2011;56:177-82.

Lindestam Arlehamn CS, McKinney DM, Carpenter C, Paul S, Rozot V, Makgotlho E, et al. A Quantitative Analysis of Complexity of Human Pathogen-Specific CD4 T Cell Responses in Healthy M. Tuberculosis Infected South Africans. Salgame P, ed. PLoS Pathogens 2016;12:e1005760.

Zhou F, Xu X, Wu S, Cui X, Fan L, Pan W. Influence of HLA-DRB1 Alleles on the Variations of Antibody Response to Tuberculosis Serodiagnostic Antigens in Active Tuberculosis Patients. PLoS ONE One 2016;11:e0165291.

Wyllie S, Seu P, Goss JA. The natural resistance associated macrophage protein 1 Slc11a1 (formerly Nramp1) and iron metabolism in macrophages. Microbes Infect 2002;4:351-9.

Huang L, Liu C, Liao G, Yang X, Tang X, Chen J. Vitamin D Receptor Gene FokI Polymorphism Contributes to Increasing the Risk of Tuberculosis: An Update Meta-Analysis. Medicine (Baltimore) 2015;94:e2256.

Hoal E, Lewis L, Jamieson S, Tanzer F, Rossouw M, Victor T, et al. SLC11A1 (NRAMP1) but not SLC11A2 (NRAMP2) polymorphisms are associated with susceptibility to tuberculosis in a high-incidence community in South Africa. Int J Tuberc Lung D 2004;8:1464-71.

Li H, Zhang T, Zhou Y, Huang Q, Huang J. SLC11A1 (formerly NRAMP1) gene polymorphisms and tuberculosis susceptibility: a meta-analysis. Int J Tuberc Lung D 2006;10:3-12.

Vidyarani M, Selvaraj P, Prabhu AS, Jawahar M, Adhilakshmi A, Narayanan P. Interferon gamma (IFNgamma) & interleukin-4 (IL-4) gene variants & cytokine levels in pulmonary tuberculosis. Indian J Med Res 2006;124:403-10.

Wei Z, Wenhao S, Yuanyuan M, Yang L, Daming Z, Jiangchun X, et al. A single nucleotide polymorphism in the interferon-γ gene (IFNG +874 T/A) is associated with susceptibility to tuberculosis. Oncotarget 2017;8:50415-29.

Marlo Moller, Erika de Wit, Eileen G. Hoal. Past, present and future directions in human genetic susceptibility to tuberculosis. FEMS Immunol Med Microbiol 2010;58:3-26.

Lopez-Maderuelo D, Arnalich F, Serantes R, Gonzalez A, Codoceo R, Madero R, et al. Interferon-gamma and interleukin-10 gene polymorphisms in pulmonary tuberculosis. Am J Resp Crit Care 2003;167:970-5.

Tso H, Ip W, Chong W, Tam C, Chiang A, Lau Y. Association of interferon gamma and interleukin 10 genes with tuberculosis in Hong Kong Chinese. Genes Immun 2005;6:358-63.

Rossouw M, Nel H, Cooke G, van Helden P, Hoal E. Association between tuberculosis and a polymorphic NF kappa B binding site in the interferon gamma gene. Lancet 2003;361:1871-2.

Hobbs M, Udhayakumar V, Levesque M, Booth J, Roberts JM, Tkachuk AN, et al. A new NOS2 promoter polymorphism associated with increased nitric oxide production and protection from severe malaria in Tanzanian and Kenyan children. Lancet 2002;360:1468-75.

Jamaati H, Mortaz E, Pajouhi Z, Folkerts G, Movassaghi M, Moloudizargari M, Garssen J, et al. Front Microbiol 2017;8:2008.

Chan E, Chan J, Schluger N. What is the role of nitric oxide in murine and human host defense against tuberculosis? Current knowledge. Am J Resp Cell Mol 2001;25:606-12.

Pahari S, Kaur G, Negi S, Aqdas M, Das DK, Bashir H, et al. Reinforcing the Functionality of Mononuclear

Phagocyte System to Control Tuberculosis. Front Immunol 2018;9:193.

Gomez L, Anaya J, Vilchez J, Cadena J, Hinojosa R, Velez L, et al. A polymorphism in the inducible nitric oxide synthase gene is associated with tuberculosis. Tuberculosis 2007;87:288-94.

Hasan Z, Zaidi I, Jamil B, Khan M, Kanji A, Hussain R. Elevated ex vivo monocyte chemotactic protein-1 (CCL2) in pulmonary as compared with extra-pulmonary tuberculosis. BMC Immunol 2005;6:14.

Mourik BC, Lubberts E, de Steenwinkel JEM, Ottenhoff THM, Leenen PJM. Interactions between Type 1 Interferons and the Th17 Response in Tuberculosis: Lessons Learned from Autoimmune Diseases. Front Immunol 2017;8:294.

Chang JT, Wherry EJ, Goldrath AW. Molecular regulation of effector and memory T cell differentiation. Nat Immunol 2014;15:1104-15.

Tabara Y, Kohara K, Yamamoto Y, Igase M, Nakura J, Kondo I, Miki T. Polymorphism of the monocyte chemoattractant protein (MCP-1) gene is associated with the plasma level of MCP-1 but not with carotid intima-media thickness. Hypertens Res 2003;26:677-83.

Jabot-Hanin F, Cobat A, Feinberg J, Orlova M, Niay J, Deswarte C, et al. An eQTL variant of ZXDC is associated with IFN-γ production following Mycobacterium tuberculosis antigen-specific stimulation. Sci Rep 2017;7:12800.

Jamieson S, Miller E, Black G, Peacock CS, Cordell HJ, Howson JM, et al. Evidence for a cluster of genes on chromosome 17q11-q21 controlling susceptibility to tuberculosis and leprosy in Brazilians. Genes Immun 2004;5:46-57.

Moller M, Nebel A, Valentonyte R, van Helden PD, Schreiber S, Hoal EG. Investigation of chromosome 17 candidate genes in susceptibility to TB in a South African population. Tuberculosis 2009;89:189-94.

Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol 2004;4:499-511.

Quesniaux V, Fremond C, Jacobs M, Parida S, Nicolle D, Yeremeev V, et al. Toll-like receptor pathways in the immune responses to mycobacteria. Microbes Infect 2004;6:946-59.

Ferwerda G, Girardin S, Kullberg B Le Bourhis L, de Jong DJ, Langenberg DM, et al. NOD2 and tolllike receptors are nonredundant recognition systems of Mycobacterium tuberculosis. PLoS Pathog 2005;1:279-85.

Ma X, Liu Y, Gowen BB, Graviss EA, Clark AG, Musser JM. Full-exon resequencing reveals toll-like receptor variants contribute to human susceptibility to tuberculosis disease. PLoS One 2007;2:e1318.

Ogus A, Yoldas B, Ozdemir T, Uguz A, Olcen S, Keser I, et al. The Arg753GLn polymorphism of the human toll-like receptor 2 gene in tuberculosis disease. Eur Respir J 2004;23:219-23.

Holmskov U, Thiel S, Jensenius JC. Collections and ficolins: humoral lectins of the innate immune defense. Annu Rev Immunol 2003;21:547-78.

Turner M, Johnson M, Booth C, Klein N, Rolland J, Davies J. Assays for human mannose-binding lectin. J Immunol Methods 2003;276:147-9.

Yang D, Kong Y. The bacterial and host factors associated with extrapulmonary dissemination of Mycobacterium tuberculosis. Front Biol 2015;10:252-61.

Soborg C, Madsen H, Andersen A, Lillebaek T, Kok-Jensen A, Garred P. Mannose-binding lectin polymorphisms in clinical tuberculosis. J Infect Dis 2003;188:777-82.

Cosar H, Ozkinay F, Onay H, Bayram N, Bakiler AR, Anil M, et al. Low levels of mannose-binding lectin confers protection against tuberculosis in Turkish children. Eur J Clin Microbiol 2008;27:1165-9.

Ji X, Gewurz H, Spear GT. Mannose binding lectin (MBL) and HIV. Mol Immunol 2005;42:145-52.

Barreiro LB, Neyrolles O, Babb CL, Tailleux L, Quach H, McElreavey K, et al. Promoter variation in the DC-SIGN encoding gene CD209 is associated with tuberculosis. PLoS Med 2006;3:e20.

Klug-Micu GM, Stenger S, Sommer A, Liu PT, Krutzik SR, Modlin RL, et al. CD40 ligand and interferon-γ induce an antimicrobial response against Mycobacterium tuberculosis in human monocytes. Immunology 2013;139:121-8.

Areeshi MY, Mandal RK, Dar SA, Jawed A, Wahid M, Lohani M, et al. IL-10 -1082 A>G (rs1800896) polymorphism confers susceptibility to pulmonary tuberculosis in Caucasians but not in Asians and Africans: a meta-analysis. Biosci Rep 2017;37:BSR20170240.

Sudfeld CR, Mugusi F, Aboud S, Nagu TJ, Wang M, Fawzi WW. Efficacy of vitamin D3 supplementation in reducing incidence of pulmonary tuberculosis and mortality among HIV-infected Tanzanian adults initiating antiretroviral therapy: study protocol for a randomized controlled trial. Trials 2017;18:66.

Selvaraj P, Narayanan P, Reetha A. Association of vitamin D receptor genotypes with the susceptibility to pulmonary tuberculosis in female patients & resistance in female contacts. Indian J Med Res 2000;111:172-9.

Wilkinson R, Llewelyn M, Toossi Z, Patel P, Pasvol G, Lalvani A, et al. Influence of vitamin D deficiency and vitamin D receptor polymorphisms on tuberculosis among Gujarati Asians in west London: a case control study.

Lancet 2000;355:618-21.

Lee SW, Chuang TY, Huang HH, Liu CW, Kao YH, Wu LS. VDR and VDBP genes polymorphisms associated with susceptibility to tuberculosis in a Han Taiwanese population. J Microbiol Immunol Infect 2016;49:783-7.

Babb C, van der Merwe L, Beyers N, Pheiffer C, Walzl G, Duncan K, et al. Vitamin D receptor gene polymorphisms and sputum conversion time in pulmonary tuberculosis patients. Tuberculosis 2007;87:295-302.

Pai M, Schito M. Tuberculosis diagnostics in 2015: landscape, priorities, needs, and prospects. J Infect Dis 2015;211:S21-8.

Adekambi T, Ibegbu CC, Cagle S, Kalokhe AS, Wang YF, Hu Y, et al. Biomarkers on patient T cells diagnose active tuberculosis and monitor treatment response. J Clin Invest 2015;125:1827-38.

Portevin D, Moukambi F, Clowes P, Bauer A, Chachage M, Ntinginya NE, et al. Assessment of the novel T-cell activation marker-tuberculosis assay for diagnosis of active tuberculosis in children: a prospective proof-of-concept study. Lancet Infect Dis 2014;14:931-8.

Rozot V, Patrizia A, Vigano S, Mazza-Stalder J, Idrizi E, Day CL, et al. Combined use of Mycobacterium tuberculosis-specific CD4 and CD8 T-cell responses is a powerful diagnostic tool of active tuberculosis. Clin Infect Dis 2015;60:432-7.

Rozot V, Vigano S, Mazza-Stalder J, Idrizi E, Day CL, Perreau M, et al. Mycobacterium tuberculosis-specific CD8+ T cells are functionally and phenotypically different between latent infection and active disease. Eur J Immunol 2013;43:1568-77.

Nikitina IY, Kondratuk NA, Kosmiadi GA, Amansahedov RB, Vasilyeva IA, Ganusov et al. Mtb-Specific CD27low CD4 T cells as markers of lung tissue destruction during pulmonary tuberculosis in humans. PLoS One 2012;7:e43733.

Sutherland JS, Loxton AG, Haks MC, Kassa D, Ambrose L, Lee JS, et al. Differential gene expression of activating Fcγ receptor classifies active tuberculosis regardless of human immunodeficiency virus status or ethnicity. Clin Microbiol Infect 2014;20:O230-8.

Luo J, Zhang M, Yan B, Zhang K, Chen M, Deng S. Imbalance of Th17 and Treg in peripheral blood mononuclear cells of active tuberculosis patients. Braz J Infect Dis 2017;21:155-61.

Guedan S, Chen X, Madar A, Carpenito C, McGettigan SE, Frigault MJ et al. ICOS-based chimeric antigen receptors program bipolar TH17/TH1 cells. Blood 2014;124:1070-80.

Cosmi L, De Palma R, Santarlasci V, Maggi L, Capone M, Frosali F, et al. Human interleukin 17–producing cellsoriginate from a CD161+CD4+ T cell precursor. J Exp Med 2008;205:1903-16.

Grimaldi D, Le Bourhis L, Sauneuf B, Dechartres A, Rousseau C, Ouaaz F, et al. Specific MAIT cell behaviour among innate-like T lymphocytes in critically ill patients with severe infections. Intensive Care Med 2014;40:192-201.

Sharma PK, Wong EB, Napier RJ, Bishai WR, Ndung’u T, Kasprowicz V, et al. High expression of CD26 accurately identifies human bacteria-reactive MR1-restricted MAIT cells. Immunology 2015;145:443-53.

Coulter F, Parrish A, Manning D, Kampmann B, Mendy J, Garand M, et al. IL-17 Production from T Helper 17, Mucosal-Associated Invariant T, and γδ Cells in Tuberculosis Infection and Disease. Front Immunol 2017;11:1252.

Published
2018-11-26
How to Cite
1.
Fernando Fernández Soto G, Valero Cedeño N, Arráiz de Fernández C, Paredes Lascano P, Fernández Nieto M, Teresa Peñaherrera Ron M. Mycobacterium Tuberculosis Infection: Participation of TH1, TH2, TH17 and Regulatory T Cells in the Immune Response. Acta Med Iran. 56(8):484-493.
Section
Review Article(s)