Immunopathogenesis of Ankylosing Spondylitis: An Updated Review

  • Gholamreza Daryabor Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
  • Sara Harsini Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran. AND Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
  • Nima Rezaei Mail Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran. AND Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran. AND Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
Ankylosing spondylitis, Immunogenetics, Single nucleotide polymorphism, Autoimmunity, Arthritis


Ankylosing spondylitis (AS) is a chronic immune-mediated inflammatory arthritis of unknown etiology, which belongs to a group of conditions known as spondyloarthropathies that comprises psoriatic arthritis, reactive arthritis, and enteropathic arthritis. AS causes pathologic new-bone formation in the axial skeleton, and leads to chronic pain, axial fusion, deformity, disability and skeletal fracture. Several genetic and environmental factors are known to be associated with AS. Notwithstanding the fact that a multitude of genes, such as human leukocyte antigen B27 (HLA-B27), endoplasmic reticulum-associated aminopeptidase 1 (ERAP1), and interleukin-23 receptor (IL-23R) have been previously speculated to be associated with individuals’ susceptibility to AS, no consensus about their precise role in the etiopathogenesis of AS has been reached. In the present study, we summarize the current literature on the immunogenetics of AS and contemporize the research advancement that has been made over the past decade.


van Tubergen A, Weber U. Diagnosis and classification in spondyloarthritis: identifying a chameleon. Nat Rev Rheumatol 2012;8:253-61.

Seregin SS, Rastall DP, Evnouchidou I, Aylsworth CF,Quiroga D, Kamal RP, et al. Endoplasmic reticulum aminopeptidase-1 alleles associated with increased risk of ankylosing spondylitis reduce HLAB27 mediated presentation of multiple antigens. Autoimmunity 2013;46:497-508.

Repo H, Ristola M, Leirisalo-Repo M. Enhanced inflammatory reactivity in the pathogenesis of spondyloarthropathies. Autoimmunity. 1990;7(4):245-54.

Dean LE, Jones GT, MacDonald AG, Downham C, Sturrock RD, Macfarlane GJ. Global prevalence of ankylosing spondylitis. Rheumatology 2014;53:650-7.

Lee W, Reveille JD, Davis JC, Learch TJ, Ward MM, Weisman MH. Are there gender differences in severity of ankylosing spondylitis? Results from the PSOAS cohort. Ann Rheum Dis 2007;66:633-8.

Stone M, Warren RW, Bruckel J, Cooper D, Cortinovis D, Inman RD. Juvenile‐onset ankylosing spondylitis is associated with worse functional outcomes than adult‐onset ankylosing spondylitis. Arthritis Care Res 2005;53:445-51.

Calin A. Ankylosing spondylitis. Medicine 2006;34:396-400.

Wanders A, Landewe R, Dougados M, Mielants H, van der Linden S, Van Der Heijde D. Association between radiographic damage of the spine and spinal mobility for individual patients with ankylosing spondylitis: can assessment of spinal mobility be a proxy for radiographic evaluation? Ann Rheum Dis 2005;64:988-94.

McGonagle D, Gibbon W, Emery P. Classification of inflammatory arthritis by enthesitis. Lancet 1998;352:1137-40.

Baraliakos X, Listing J, Rudwaleit M, Haibel H, Brandt J, Sieper J, et al. Progression of radiographic damage in patients with ankylosing spondylitis: defining the central role of syndesmophytes. Ann Rheum Dis 2007;66:910-5.

Martin TM, Smith JR, Rosenbaum JT. Anterior uveitis: current concepts of pathogenesis and interactions with the spondyloarthropathies. Curr Opin Rheumatol 2002;14:337-41.

Machado P, Landewé R, Braun J, Baraliakos X, Hermann K-GA, Hsu B, et al. Ankylosing spondylitis patients with and without psoriasis do not differ in disease phenotype. Ann Rheum Dis 2013:72:1104-7.

Rudwaleit M, Baeten D. Ankylosing spondylitis and bowel disease. Best Pract Res Clin Rheumatol 2006;20:451-71.

Karberg K, Zochling J, Sieper J, Felsenberg D, Braun J. Bone loss is detected more frequently in patients with ankylosing spondylitis with syndesmophytes. J Rheumatol 2005;32:1290-8.

Linden SVD, Valkenburg HA, Cats A. Evaluation ofdiagnostic criteria for ankylosing spondylitis. Arthritis Rheumatol 984;27:361-8.

Bredella MA, Steinbach LS, Morgan S, Ward M, Davis JC. MRI of the sacroiliac joints in patients with moderate to severe ankylosing spondylitis. Am J Roentgenol 2006;187:1420-6.

Braun J, Bollow M, Neure L, Seipelt E, Seyrekbasan F, Herbst H, et al. Use of immunohistologic and in situ hybridization techniques in the examination of sacroiliac joint biopsy specimens from patients with ankylosing spondylitis. Arthritis Rheumatol 1995;38:499-505.

Dangoria NS, DeLay ML, Kingsbury DJ, Mear JP, Uchanska-Ziegler B, Ziegler A, et al. HLA-B27 misfolding is associated with aberrant intermolecular disulfide bond formation (dimerization) in the endoplasmic reticulum. J Biol Chem 2002;277:23459-68.

Mear JP, Schreiber KL, Münz C, Zhu X, Stevanović S, Rammensee H-G, et al. Misfolding of HLA-B27 as a result of its B pocket suggests a novel mechanism for its role in susceptibility to spondyloarthropathies. J Immunol 1999;163:6665-70.

Allen RL, O’Callaghan CA, McMichael AJ, Bowness P. Cutting edge: HLA-B27 can form a novel β2-microglobulin-free heavy chain homodimer structure. J Immunol 1999;162:5045-8.

Bird LA, Peh CA, Kollnberger S, Elliott T, McMichael AJ, Bowness P. Lymphoblastoid cells express HLA‐B27 homodimers both intracellularly and at the cell surface following endosomal recycling. Eur J Immunol 2003;33:748-59.

Kollnberger S, Bird L, Sun MY, Retiere C, Braud VM, McMichael A, et al. Cell‐surface expression and immune receptor recognition of HLA–B27 homodimers. Arthritis Rheum 2002;46:2972-82.

Colbert RA, Tran TM, Layh-Schmitt G. HLA-B27 misfolding and ankylosing spondylitis. Mol Immunol 2014;57:44-51.

MacLean I, Iqball S, Woo P, Keat A, Hughes R, KINGSLEYJ G, et al. HLA‐B27 subtypes in the spondarthropathies. Clin Exp Immunol 1993;91:214-9.

Reveille J, Inman R, Khan M, Yu D, Jin L. Family studies in ankylosing spondylitis: microsatellite analysis of 55 concordant sib pairs. J Rheumatol 2000;27:5.

Lopez‐Larrea C, Sujirachato K, Mehra N, Chiewsilp P, Isarangkura D, Kanga U, et al. HLA‐B27 subtypes in Asian patients with ankylosing spondylitis Evidence for new associations. Tissue Antigens 1995;45:169-76.

Gonzalez‐Roces S, Alvarez M, Gonzalez S, Dieye A, Makni H, Woodfield D, et al. HLA‐B27 polymorphism and worldwide susceptibility to ankylosing spondylitis. Tissue Antigens 1997;49:116-23.

Armas JB, Gonzalez S, Martinez‐Borra J, Laranjeira F, Ribeiro E, Correia J, et al. Susceptibility to ankylosing spondylitis is independent of the Bw4 and Bw6 epitopes of HLA‐B27 alleles. Tissue Antigens 1999;53:237-43.

García‐Fernández S, Gonzalez S, Mina Blanco A, Martinez‐Borra J, Blanco‐Gelaz M, López‐Vazquez A, et al. New insights regarding HLA‐B27 diversity in the Asian population. Tissue Antigens 2001;58:259-62.

Djouadi K, Nedelec B, Tamouza R, Genin E, Ramasawmy R, Charron D, et al. Interleukin 1 gene cluster polymorphisms in multiplex families with spondylarthropathies. Cytokine 2001;13:98-103.

D'amato M, Fiorillo MT, Carcassi C, Mathieu A, Zuccarelli A, Bitti PP, et al. Relevance of residue 116 of HLA‐B27 in determining susceptibility to ankylosing spondylitis. Eur J Immunol 1995;25:3199-201.

Reveille JD, Maganti RM. Subtypes of HLA-B27: history and implications in the pathogenesis of ankylosing spondylitis. Adv Exp Med Biol. 2009;649:159-76.

Olivieri I, D'Angelo S, Scarano E, Santospirito V, Padula A. The HLA–B* 2709 subtype in a woman with early ankylosing spondylitis. Arthritis Rheum 2007;56:2805-7.

Evans DM, Spencer CC, Pointon JJ, Su Z, Harvey D, Kochan G, et al. Interaction between ERAP1 and HLA-B27 in ankylosing spondylitis implicates peptide handling in the mechanism for HLA-B27 in disease susceptibility. Nat Genet 2011;43:761-7.

Lin Z, Bei J-X, Shen M, Li Q, Liao Z, Zhang Y, et al. A genome-wide association study in Han Chinese identifies new susceptibility loci for ankylosing spondylitis. Nat Genet 2012;44:73-7.

Burton PR, Clayton DG, Cardon LR, Craddock N, Deloukas P, Duncanson A, et al. Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nat Genet 2007;39:1329-37.

Consortium A-A-AS. Genome-wide association study of ankylosing spondylitis identifies non-MHC susceptibility loci. Nat Genet 2010;42:123-7.

Consortium IGoAS. Identification of multiple risk variants for ankylosing spondylitis through high-density genotyping of immune-related loci. Nat Genet 2013;45:730-8.

McGarry F, Neilly J, Anderson N, Sturrock R, Field M. A polymorphism within the interleukin 1 receptor antagonist (IL‐1Ra) gene is associated with ankylosing spondylitis. Rheumatology 2001;40:1359-64.

York IA, Goldberg AL, Mo X, Rock KL. Proteolysis and class I major histocompatibility complex antigen presentation. Immunol Rev 1999;172:49-66.

York IA, Chang S-C, Saric T, Keys JA, Favreau JM, Goldberg AL, et al. The ER aminopeptidase ERAP1

enhances or limits antigen presentation by trimming epitopes to 8–9 residues. Nat Immunol 2002;3:1177-84.

Sato Y. Role of aminopeptidase in angiogenesis. Biol Pharmaceut Bull 2004;27:772-6.

Hisatsune C, Ebisui E, Usui M, Ogawa N, Suzuki A, Mataga N, et al. ERp44 Exerts Redox-Dependent Control of Blood Pressure at the ER. Mol Cell 2015;58:1015-27.

Cifaldi L, Romania P, Lorenzi S, Locatelli F, Fruci D. Role of endoplasmic reticulum aminopeptidases in health and disease: from infection to cancer. Int J Mol Sci 2012;13:8338-52.

Cui X, Hawari F, Alsaaty S, Lawrence M, Combs CA, Geng W, et al. Identification of ARTS-1 as a novel TNFR1-binding protein that promotes TNFR1 ectodomain shedding. J Clin Invest 2002;110:515-26.

Cui X, Rouhani FN, Hawari F, Levine SJ. An aminopeptidase, ARTS-1, is required for interleukin-6 receptor shedding. J Biol Chem 2003;278:28677-85.

Cui X, Rouhani FN, Hawari F, Levine SJ. Shedding of the type II IL-1 decoy receptor requires a multifunctional aminopeptidase, aminopeptidase regulator of TNF receptor type 1 shedding. J Immunol 2003;171:6814-9.

Haroon N, Tsui FW, Chiu B, Tsui HW, Inman RD. Serum cytokine receptors in ankylosing spondylitis: relationship to inflammatory markers and endoplasmic reticulum aminopeptidase polymorphisms. J Rheumatol 2010;37:1907-10.

94 . Goto Y, Ogawa K, Nakamura TJ, Hattori A, Tsujimoto M. TLR-mediated secretion of endoplasmic reticulum aminopeptidase 1 from macrophages. The J Immunol 2014;192:4443-52.

Maksymowych WP, Inman RD, Gladman DD, Reeve JP, Pope A, Rahman P. Association of a specific ERAP1/ARTS1 haplotype with disease susceptibility in ankylosing spondylitis. Arthritis Rheum 2009;60:1317-23.

Harvey D, Pointon JJ, Evans DM, Karaderi T, Farrar C, Appleton LH, et al. Investigating the genetic association between ERAP1 and ankylosing spondylitis. Hum Mol Genet 2009;18:4204-12.

Alvarez-Navarro C, de Castro JAL. ERAP1 structure, function and pathogenetic role in ankylosing spondylitis and other MHC-associated diseases. Mol Immunol 2014;57:12-21.

Robinson PC, Claushuis TA, Cortes A, Martin TM, Evans DM, Leo P, et al. Genetic dissection of acute anterior uveitis reveals similarities and differences in associations observed with ankylosing spondylitis. Arthritis Rheumatol 2015;67:140-51.

Tsoi LC, Spain SL, Knight J, Ellinghaus E, Stuart PE, Capon F, et al. Identification of 15 new psoriasis susceptibility loci highlights the role of innate immunity. Nat Genet 2012;44:1341-8.

Franke A, McGovern DP, Barrett JC, Wang K, Radford-Smith GL, Ahmad T, et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci. Nat Genet 2010;42:1118-25.

Tsui FWL, Haroon N, Reveille JD, Rahman P, Chiu B, Tsui HW, et al. Association of an ERAP1 ERAP2 haplotype with familial ankylosing spondylitis. Ann Rheum Dis 2010;69:733-6.

Robinson PC, Costello M-E, Leo P, Bradbury LA, Hollis K, Cortes A, et al. ERAP2 is associated with ankylosing spondylitis in HLA-B27-positive and HLA-B27-negative patients. Ann Rheum Dis 2015;74:1627-9.

85 . Parham C, Chirica M, Timans J, Vaisberg E, Travis M, Cheung J, et al. A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rβ1 and a novel cytokine receptor subunit, IL-23R. J Immunol 2002;168:5699-708.

Cua DJ, Sherlock J, Chen Y, Murphy CA, Joyce B, Seymour B, et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 2003;421:744-8.

Geboes L, Dumoutier L, Kelchtermans H, Schurgers E, Mitera T, Renauld JC, et al. Proinflammatory role of the Th17 cytokine interleukin‐22 in collagen‐induced arthritis in C57BL/6 mice. Arthritis Rheum 2009;60:390-5.

Annunziato F, Cosmi L, Liotta F, Maggi E, Romagnani S. Human Th17 cells: are they different from murine Th17 cells? Eur J Immunol 2009;39:637-40.

Wendling D, Cedoz J-P, Racadot E, Dumoulin G. Serum IL-17, BMP-7, and bone turnover markers in patients with ankylosing spondylitis. Joint Bone Spine 2007;74:304-5.

Singh R, Aggarwal A, Misra R. Th1/Th17 cytokine profiles in patients with reactive arthritis/undifferentiated spondyloarthropathy. J Rheumatol 2007;34:2285-90.

Noordenbos T, Yeremenko N, Gofita I, van de Sande M, Tak PP, Caňete JD, et al. Interleukin‐17–positive mast cells contribute to synovial inflammation in spondylarthritis. Arthritis Rheum 2012;64:99-109.

Jovanovic DV, Di Battista JA, Martel-Pelletier J, Jolicoeur FC, He Y, Zhang M, et al. IL-17 stimulates the production and expression of proinflammatory cytokines, IL-β and TNF-α, by human macrophages. J Immunol 1998;160:3513-21.

Fossiez F, Djossou O, Chomarat P, Flores-Romo L, Ait-Yahia S, Maat C, et al. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J Exp Med 1996;183:2593-603.

Kotake S, Udagawa N, Takahashi N, Matsuzaki K, Itoh

K, Ishiyama S, et al. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest 1999;103:1345.

Schett G. Joint remodelling in inflammatory disease. Ann Rheum Dis 2007;66:iii42-4.

Rahman P, Inman RD, Gladman DD, Reeve JP, Peddle L, Maksymowych WP. Association of interleukin‐23 receptor variants with ankylosing spondylitis. Arthritis Rheum 2008;58:1020-5.

Karaderi T, Harvey D, Farrar C, Appleton LH, Stone MA, Sturrock RD, et al. Association between the interleukin 23 receptor and ankylosing spondylitis is confirmed by a new UK case–control study and meta-analysis of published series. Rheumatology 2009;48:386-9.

Daryabor G, Mahmoudi M, Jamshidi A, Nourijelyani K, Amirzargar A, Ahmadzadeh N, et al. Determination of IL-23 receptor gene polymorphism in Iranian patients with ankylosing spondylitis. Eur Cytokine Netw 2014;25:24-9.

Dong H, Li Q, Zhang Y, Tan W, Jiang Z. IL23R gene confers susceptibility to ankylosing spondylitis concomitant with uveitis in a Han Chinese population. PloS One 2013;8:e67505.

Duerr RH, Taylor KD, Brant SR, Rioux JD, Silverberg MS, Daly MJ, et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 2006;314:1461-3.

Cargill M, Schrodi SJ, Chang M, Garcia VE, Brandon R, Callis KP, et al. A Large-Scale Genetic Association Study Confirms IL12B and Leads to the Identification of IL23R as Psoriasis-Risk Genes. Am J Hum Genet 2007;80:273-90.

Dinarello CA. Interleukin-1 and interleukin-1 antagonism. Blood 1991;77:1627-52.

Sims AM, Timms AE, Bruges-Armas J, Burgos-Vargas R, Chou C-T, Doan T, et al. Prospective meta-analysis of interleukin 1 gene complex polymorphisms confirms associations with ankylosing spondylitis. Ann Rheum Dis 2008;67:1305-9.

Vijgen L, Van Gysel M, Rector A, Thoelen I, Esters N, Ceelen T, et al. Interleukin-1 receptor antagonist VNTR-polymorphism in inflammatory bowel disease. Genes Immun 2002;3:400-6.

Blakemore AI, Tarlow JK, Cork MJ, Gordon C, Emery P, Duff GW. Interleukin-1 receptor antagonist gene polymorphism as a disease severity factor in systemic lupus erythematosus. Arthritis Rheumatism 1994;37:1380-5.

Van der Paardt M, Crusius J, García‐González M, Baudoin P, Kostense P, Alizadeh B, et al. Interleukin‐1β and interleukin‐1 receptor antagonist gene in ankylosing spondylitis. Rheumatology 2002;41:1419-23.

Agrawal S, Srivastava R, Sharma B, Pandya S, Misra R, Aggarwal A. IL1RN* 2 allele of IL-1receptor antagonist VNTR polymorphism is associated with susceptibility to anklyosing spondylitis in Indian patients. Clin Rheumatol 2008;27:573-6.

Ruland J. CARD9 signaling in the innate immune response. Ann N York Acad Sci 2008;1143:35-44.

LeibundGut-Landmann S, Groß O, Robinson MJ, Osorio F, Slack EC, Tsoni SV, et al. Syk-and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat Immunol 2007;8:630-8.

Zhernakova A, Festen EM, Franke L, Trynka G, van Diemen CC, Monsuur AJ, et al. Genetic analysis of innate immunity in Crohn's disease and ulcerative colitis identifies two susceptibility loci harboring CARD9 and IL18RAP. Am J Hum Genet 2008;82:1202-10.

Pointon JJ, Harvey D, Karaderi T, Appleton LH, Farrar C, Stone MA, et al. Elucidating the chromosome 9 association with AS; CARD9 is a candidate gene. Genes Immun 2010;11:490-6.

Hugot J-P, Chamaillard M, Zouali H, Lesage S, Cézard J-P, Belaiche J, et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 2001;411:599-603.

Ingelman-Sundberg M. Genetic polymorphisms of cytochrome P450 2D6 (CYP2D6): clinical consequences, evolutionary aspects and functional diversity. Pharmacogenomics J 2005;5:6-13.

Zhou SF. Polymorphism of human cytochrome P450 2D6 and its clinical significance: Part I. Clin Pharmacokinetics 2009;48:689-723.

Beyeler C, Armstrong M, Bird H, Idle J, Daly A. Relationship between genotype for the cytochrome P450 CYP2D6 and susceptibility to ankylosing spondylitis and rheumatoid arthritis. Ann Rheumatic Dis 1996;55:66-8.

Brown MA, Edwards S, Hoyle E, Campbell S, Laval S, Daly AK, et al. Polymorphisms of the CYP2D6 gene increase susceptibility to ankylosing spondylitis. Hum Mol Genet 2000;9:1563-6.

Griem P, Wulferink M, Sachs B, González J, Gleichmann E. Allergic and autoimmune reactions to xenobiotics: how do they arise? Immunol Today 1998;19:133-41.

Brown MA, Edwards S, Hoyle E, Campbell S, Laval S, Daly AK, et al. Polymorphisms of the CYP2D6 gene increase susceptibility to ankylosing spondylitis. Hum Mol Genet 2000;9:1563-6.

Sanchez A, Szczypiorska M, Juanola X, Bartolome N, Gratacos J, Zarco P, et al. Association of the intergenic

single-nucleotide polymorphism rs10865331 (2p15) with ankylosing spondylitis in a Spanish population. J Rheumatol 2010;37:2345-7.

Bang SY, Kim TH, Lee B, Kwon E, Choi SH, Lee KS, et al. Genetic studies of ankylosing spondylitis in Koreans confirm associations with ERAP1 and 2p15 reported in white patients. J Rheumatol 2011;38:322-4.

Sánchez A, Szczypiorska M, Juanola X, Bartolomé N, Gratacós J, Zarco P, et al. Association of the intergenic single-nucleotide polymorphism rs10865331 (2p15) with ankylosing spondylitis in a Spanish population. J Rheumatol 2010;37:2345-7.

Bernasconi P, Cappelletti C, Navone F, Nessi V, Baggi F, Vernos I, et al. The kinesin superfamily motor protein KIF4 is associated with immune cell activation in idiopathic inflammatory myopathies. J Neuropathol Exp Neurol 2008;67:624-32.

Aulchenko YS, Hoppenbrouwers IA, Ramagopalan SV, Broer L, Jafari N, Hillert J, et al. Genetic variation in the KIF1B locus influences susceptibility to multiple sclerosis. Nat Genet 2008;40:1402-3.

Barrett JC, Hansoul S, Nicolae DL, Cho JH, Duerr RH, Rioux JD, et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease. Nat Genet 2008;40:955-62.

Danoy P, Pryce K, Hadler J, Bradbury LA, Farrar C, Pointon J, et al. Association of variants at 1q32 and STAT3 with ankylosing spondylitis suggests genetic overlap with Crohn’s disease. PLoS Genet 2010;6:e1001195.

Yang X, Li M, Wang L, Hu Z, Zhang Y, Yang Q. Association of KIF21B genetic polymorphisms with ankylosing spondylitis in a Chinese Han population of Shandong Province. Clin Rheumatol 2015;34:1729-36.

Park J-H, Adoro S, Guinter T, Erman B, Alag AS, Catalfamo M, et al. Signaling by intrathymic cytokines, not T cell antigen receptors, specifies CD8 lineage choice and promotes the differentiation of cytotoxic-lineage T cells. Nat Immunol 2010;11:257-64.

Guo C, Yao F, Wu K, Yang L, Zhang X, Ding J. Chromatin immunoprecipitation and association study revealed a possible role of Runt-related transcription factor 3 in the ulcerative colitis of Chinese population. Clin Immunol 2010;135:483-9.

Dubois PC, Trynka G, Franke L, Hunt KA, Romanos J, Curtotti A, et al. Multiple common variants for celiac disease influencing immune gene expression. Nat Genet 2010;42:295-302.

Yamazaki K, Umeno J, Takahashi A, Hirano A, Johnson TA, Kumasaka N, et al. A genome-wide association study identifies 2 susceptibility loci for Crohn's disease in Japanese population. Gastroenterology 2013;144:781-8.

Cargill M, Schrodi SJ, Chang M, Garcia VE, Brandon R, Callis KP, et al. A large-scale genetic association study confirms IL12B and leads to the identification of IL23R as psoriasis-risk genes. Am J Hum Genet 2007;80:273-90.

Parkes M, Barrett JC, Prescott NJ, Tremelling M, Anderson CA, Fisher SA, et al. Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn's disease susceptibility. Nat Genet 2007;39:830-2.

Anderson CA, Boucher G, Lees CW, Franke A, D'Amato M, Taylor KD, et al. Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nat Genet 2011;43:246-52.

Terao C, Yoshifuji H, Kimura A, Matsumura T, Ohmura K, Takahashi M, et al. Two susceptibility loci to Takayasu arteritis reveal a synergistic role of the IL12B and HLA-B regions in a Japanese population. Am J Hum Genet 2013;93:289-97.

Zhang L, Fan D, Liu L, Yang T, Ding N, Hu Y, et al. Association Study of IL-12B Polymorphisms Susceptibility with Ankylosing Spondylitis in Mainland Han Population. PloS One 2015;10:e0130982.

Lai NS, Yu HC, Chen HC, Yu CL, Huang HB, Lu MC. Aberrant expression of microRNAs in T cells from patients with ankylosing spondylitis contributes to the immunopathogenesis. Clinical & Experimental Immunology. 2013;173(1):47-57.

Thjodleifsson B, Björnsson S, Bjarnason I. A common genetic background for inflammatory bowel disease and ankylosing spondylitis: a genealogic study in Iceland. Arthritis Rheum 2007;56:2633-9.

Thomas GP, Brown MA. Genetics and genomics of ankylosing spondylitis. Immunol Rev 2010;233:162-80.

Mielants H, Veys E, Goemaere S, Goethals K, Cuvelier C, De Vos M. Gut inflammation in the spondyloarthropathies: clinical, radiologic, biologic and genetic features in relation to the type of histology. A prospective study. J Rheumatol 1991;18:1542-51.

Stebbings S, Munro K, Simon M, Tannock G, Highton J, Harmsen H, et al. Comparison of the faecal microflora of patients with ankylosing spondylitis and controls using

molecular methods of analysis. Rheumatology 2002;41:1395-401.

Mielants H, Veys E, Goemaere S, DeVos M, Cuvelier C, Maerteus M, et al. Intestinal mucosal permeability in inflammatory rheumatic diseases. J Rheumatol;18:394-400.

Costello ME, Ciccia F, Willner D, Warrington N, Robinson PC, Gardiner B, et al. Brief Report: Intestinal Dysbiosis in Ankylosing Spondylitis. Arthritis Rheumatol 2015;67:686-91.

Rath HC, Herfarth HH, Ikeda JS, Grenther WB, Hamm Jr TE, Balish E, et al. Normal luminal bacteria, especially Bacteroides species, mediate chronic colitis, gastritis, and arthritis in HLA-B27/human beta2 microglobulin transgenic rats. J Clin Invest 1996;98:945-53.

Rath HC, Wilson KH, Sartor RB. Differential induction of colitis and gastritis in HLA-B27 transgenic rats selectively colonized with Bacteroides vulgatus or Escherichia coli. Infect Immun 1999;67:2969-74.

Rashid T, Ebringer A. Ankylosing spondylitis is linked to Klebsiella—the evidence. Clin Rheumatol 2007;26:858-64.

Mäki-Ikola O, Nissilä M, Lehtinen K, Leirisalo-Repo M, Toivanen P, Granfors K. Antibodies to Klebsiella pneumoniae, Escherichia coli and Proteus mirabilis in the sera of patients with axial and peripheral form of ankylosing spondylitis. Br J Rheumatol 1995;34:413-7.

Ebringer R, Cawdell D, Cowling P, Ebringer A. Sequential studies in ankylosing spondylitis. Association of Klebsiella pneumoniae with active disease. Ann Rheum Dis 1978;37:146-51.

Ringrose J. HLA-B27 associated spondyloarthropathy, an autoimmune disease based on crossreactivity between bacteria and HLA-B27? Ann Rheum Dis 1999;58:598-610.

Mundwiler ML, Mei L, Landers CJ, Reveille JD, Targan S, Weisman MH. Inflammatory bowel disease serologies in ankylosing spondylitis patients: a pilot study. Arthritis Res Ther 2009;11:R177.

Wallis D, Asaduzzaman A, Weisman M, Haroon N, Anton A, McGovern D, et al. Elevated serum anti-flagellin antibodies implicate subclinical bowel inflammation in ankylosing spondylitis: an observational study. Arthritis Res Ther 2013;15:R166.

How to Cite
Daryabor G, Harsini S, Rezaei N. Immunopathogenesis of Ankylosing Spondylitis: An Updated Review. Acta Med Iran. 56(4):214-225.
Review Article(s)