Review Article

The Role of Substance P in Neurodegenerative Diseases


Tachykinins (TKs) are a family of neuropeptides widely distributed in the human body, especially in the nervous system. TKs have exhibited both neuroprotective and neurodegenerative properties in the central nervous system (CNS) and spinal cord. Also, several studies have shown that substance P (SP), as a pioneering neuropeptide of the TK family, is engaged in the pathogenesis of neurodegenerative disorders (NDs), such as Alzheimer disease, Multiple Sclerosis, Parkinson’s disease, Huntington’s disease, and Amyotrophic lateral sclerosis. However, a huge body of information available about the level of SP in NDs demonstrates that SP and its receptors might be prognostic or diagnostic factors for NDs. The present review article summarizes the roles of TKs in common neurodegenerative disorders.

1. Bacskai BJ, Klunk WE, Mathis CA, Hyman BT. Imaging amyloid-β deposits in vivo. J Cereb Blood Flow Metab 2002;22:1035-41.
2. Klunk WE, Bacskai BJ, Mathis CA, Kajdasz ST, McLellan ME, Frosch MP, et al. Imaging Abeta plaques in living transgenic mice with multiphoton microscopy and methoxy-X04, a systemically administered Congo red derivative. J Neuropathol Exp Neurol 2002;61:797-805.
3. Small GW, Agdeppa ED, Kepe V, Satyamurthy N, Huang SC, Barrio JR. In vivo brain imaging of tangle burden in humans. J Mol Neurosci 2002;19:323-7.
4. Abdi F, Quinn JF, Jankovic J, McIntosh M, Leverenz JB, Peskind E, et al. Detection of biomarkers with a multiplex quantitative proteomic platform in cerebrospinal fluid of patients with neurodegenerative disorders. Int J Alzheimers Dis 2006;9:293-348.
5. Severini C, Improta G, Falconieri-Erspamer G, Salvadori S, Erspamer V. The tachykinin peptide family. Pharmacol Rev 2002;54:285-322.
6. Otsuka M, Yoshioka K. Neurotransmitter functions of mammalian tachykinins. Physiol Rev 1993;73:229-308.
7. Johnson MB, Young AD, Marriott I. The Therapeutic Potential of Targeting Substance P/NK-1R Interactions in Inflammatory CNS Disorders. Front Cell Neurosci 2016;10:296.
8. Liu L, Markus I, Saghire HE, Perera DS, King DW, Burcher E. Distinct differences in tachykinin gene expression in ulcerative colitis, Crohn's disease and diverticular disease: a role for hemokinin-1? Neurogastroenterol Motil. 2011;23:475-83.
9. Almeida TA, Rojo J, Nieto PM, Pinto FM, Hernandez M, Martin JD, et al. Tachykinins and tachykinin receptors: structure and activity relationships. Curr Med Chem 2004;11:2045-81.
10. Steinhoff MS, von Mentzer B, Geppetti P, Pothoulakis C, Bunnett NW. Tachykinins and their receptors: contributions to physiological control and the mechanisms of disease. Physiol Rev 2014;94:265-301.
11. Pennefather JN, Lecci A, Candenas ML, Patak E, Pinto FM, Maggi CA. Tachykinins and tachykinin receptors: a growing family. Life Sci 2004;74:1445-63.
12. Martinez AN, Philipp MT. Substance P and Antagonists of the Neurokinin-1 Receptor in Neuroinflammation Associated with Infectious and Neurodegenerative Diseases of the Central Nervous System. J Neurol neuromed 2016;1:29-36.
13. Suvas S. Role of Substance P Neuropeptide in Inflammation, Wound Healing, and Tissue Homeostasis. J immunol 2017;199:1543-52.
14. Van Loy T, Vandersmissen HP, Poels J, Van Hiel MB, Verlinden H, Vanden Broeck J. Tachykinin-related peptides and their receptors in invertebrates: a current view. Peptides 2010;31:520-4.
15. Pennefather JN, Lecci A, Candenas ML, Patak E, Pinto FM, Maggi CA. Tachykinins and tachykinin receptors: a growing family. Life Sci 2004;74:1445-63.
16. 16. Satake H, Aoyama M, Sekiguchi T, Kawada T. Insight into molecular and functional diversity of tachykinins and their receptors. Protein Pept Lett 2013;20:615-27.
17. Guard S, Watson SP. Tachykinin receptor types: classification and membrane signalling mechanisms. Neurochem Int 1991;18:149-65.
18. Page NM. New challenges in the study of the mammalian tachykinins. Peptides 2005;26:1356-68.
19. Barker R. Substance P and neurodegenerative disorders. A speculative review. Neuropeptides 1991;20:73-8.
20. Davoodian M, Boroumand N, Mehrabi Bahar M, Jafarian AH, Asadi M, Hashemy SI. Evaluation of serum level of substance P and tissue distribution of NK-1 receptor in breast cancer. Mol Biol Rep 2019;46:1285-93.
21. Gharaee N, Pourali L, Jafarian AH, Hashemy SI. Evaluation of serum level of substance P and tissue distribution of NK-1 receptor in endometrial cancer. Mol Biol Rep 2018;45:2257-62.
22. Martin JB. Molecular basis of the neurodegenerative disorders. N Engl J Med 1999;340:1970-80.
23. Constantinidis J, Bouras C, Richard J. Putative peptide neurotransmitters in human neuropathology: a review of topography and clinical implications. Clin Neuropathol 1983;2:47-54.
24. Beal MF, Martin JB. Neuropeptides in neurological disease. Ann Neurol 1986;20:547-65.
25. Leake A, Ferrier IN. Alterations in neuropeptides in aging and disease. Drugs Aging 1993;3:408-27.
26. Rossor M, Emson P. Neuropeptides in degenerative disease of the central nervous system. Trends Neurosci 1982;5:399-401.
27. US VE, Gaddum JH. An unidentified depressor substance in certain tissue extracts. J Physiol 1931;72:74-87.
28. Mussap CJ, Geraghty DP, Burcher E. Tachykinin receptors: a radioligand binding perspective. J Neurochem 1993;60:1987-2009.
29. Chen XY, Du YF, Chen L. Neuropeptides Exert Neuroprotective Effects in Alzheimer's Disease. Front Mol Neurosci 2018;11:493.
30. Pakaski M, Kalman J. Interactions between the amyloid and cholinergic mechanisms in Alzheimer's disease. Neurochem Int 2008;53:103-11.
31. Hilbich C, Kisters-Woike B, Reed J, Masters CL, Beyreuther K. Aggregation and secondary structure of synthetic amyloid βA4 peptides of Alzheimer's disease. J Mol Biol 1991;218:149-63.
32. Kirschner DA, Inouye H, Duffy LK, Sinclair A, Lind M, Selkoe DJ. Synthetic peptide homologous to beta protein from Alzheimer disease forms amyloid-like fibrils in vitro. Proc Natl Acad Sci 1987;84:6953-7.
33. Severini C, Petrella C, Calissano P. Substance P and Alzheimer’s Disease: Emerging Novel Roles. Curr Alzheimer Res 2016;13:964-72.
34. El-Agnaf OM, Irvine GB, Fitzpatrick G, Glass WK, Guthrie DJ. Comparative studies on peptides representing the so-called tachykinin-like region of the Alzheimer Abeta peptide [Abeta(25-35)]. Biochem J 1998;336:419-27.
35. Yankner BA, Duffy LK, Kirschner DA. Neurotrophic and neurotoxic effects of amyloid beta protein: reversal by tachykinin neuropeptides. Science (New York, NY). 1990;250:279-82.
36. Kowall NW, Beal MF, Busciglio J, Duffy LK, Yankner BA. An in vivo model for the neurodegenerative effects of beta amyloid and protection by substance P. Proc Natl Acad Sci 1991;88:7247-51.
37. Mitsuhashi M, Akitaya T, Turk CW, Payan DG. Amyloid β protein substituent peptides do not interact with the substance P receptor expressed in cultured cells. Mol Brain Res 1991;11:177-80.
38. Di Stefano M, Aleppo G, Casabona G, Genazzani A, Scapagnini U, Nicoletti F. Amyloid β protein does not interact with tachykinin receptors coupled to inositol phospholipid hydrolysis in human astrocytoma cells. Brain res 1993;600:166-8.
39. Kimura H, Schubert D. Amyloid beta-protein activates tachykinin receptors and inositol trisphosphate accumulation by synergy with glutamate. Proc Natl Acad Sci 1993;90:7508-12.
40. Koh JY, Yang LL, Cotman CW. Beta-amyloid protein increases the vulnerability of cultured cortical neurons to excitotoxic damage. Brain Res 1990;533:315-20.
41. Mattson MP, Cheng B, Davis D, Bryant K, Lieberburg I, Rydel RE. beta-Amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. J Neurosci 1992;12:376-89.
42. Lenard L, Laszlo K, Kertes E, Ollmann T, Peczely L, Kovacs A, et al. Substance P and neurotensin in the limbic system: Their roles in reinforcement and memory consolidation. Neurosci Biobehav Rev 2018;85:1-20.
43. Quigley Jr B, Kowall N. Substance P-like immunoreactive neurons are depleted in Alzheimer's disease cerebral cortex. Neuroscience 1991;41:41-60.
44. Beal MF, Mazurek MF. Substance P‐like immunoreactivity is reduced in Alzheimer's disease cerebral cortex. Neurology 1987;37:1205-9.
45. Martinez M, Frank A, Hernanz A. Relationship of interleukin-1β and β2-microglobulin with neuropeptides in cerebrospinal fluid of patients with dementia of the Alzheimer type. J Neuroimmunol 1993;48:235-40.
46. Johansson P, Almqvist EG, Wallin A, Johansson JO, Andreasson U, Blennow K, et al. Cerebrospinal fluid substance P concentrations are elevated in patients with Alzheimer's disease. Neurosci Lett 2015;609:58-62.
47. Cramer H, Schaudt D, Rissler K, Strubel D, Warter J-M, Kuntzmann F. Somatostatin-like immunoreactivity and substance-P-like immunoreactivity in the CSF of patients with senile dementia of Alzheimer type, multi-infarct syndrome and communicating hydrocephalus. J Neurology 1985;232:346-51.
48. Rosler N, Wichart I, Jellinger KA. Ex vivo lumbar and post mortem ventricular cerebrospinal fluid substance P-immunoreactivity in Alzheimer's disease patients. Neurosci Lett 2001;299:117-20.
49. Crystal HA, Davies P. Cortical Substance P‐Like Immunoreactivity in Cases of Alzheimer's Disease and Senile Dementia of the Alzheimer Type. J neurochem 1982;38:1781-4.
50. Davies P, Maloney A. Selective loss of central cholinergic neurons in Alzheimer's disease. Lancet 1976;308:1403.
51. Bellemère G, Morain P, Vaudry H, Jégou S. Effect of S 17092, a novel prolyl endopeptidase inhibitor, on substance P and α-melanocyte-stimulating hormone breakdown in the rat brain. J neurochem 2003;84:919-29.
52. Ishiura S, Tsukahara T, Tabira T, Shimizu T, Arahata K, Sugita H. Identification of a putative amyloid A4-generating enzyme as a prolyl endopeptidase. FEBS lett 1990;260:131-4.
53. Yoshida K, NakAajima S, Ootani T, Saito A, Amano N, Takano K, et al. Serum prolyl endopeptidase activities of patients with senile dementia of the Alzheimer type and of those with vascular dementia. J Clin Biochem Nutr 1996;21:227-35.
54. Ferrier I, Cross A, Johnson J, Roberts G, Crow T, Corsellis J, et al. Neuropeptides in Alzheimer type dementia. J Neurol Sci 1983;62:159-70.
55. Yates C, Harmar A, Rosie R, Sheward J, De Levy GS, Simpson J, et al. Thyrotropin-releasing hormone, luteinizing hormone-releasing hormone and substance P immuno-reactivity in postmortem brain from cases of alzheimer-type dementia and Down's syndrome. Brain res 1983;258:45-52.
56. Barker R, Larner A. Substance P and multiple sclerosis. Med Hypotheses 1992;37:40-3.
57. Lassmann H, Bruck W, Lucchinetti CF. The immunopathology of multiple sclerosis: an overview. Brain pathology 2007;17:210-8.
58. Podda G, Nyirenda M, Crooks J, Gran B. Innate immune responses in the CNS: role of toll-like receptors, mechanisms, and therapeutic opportunities in multiple sclerosis. J Neuroimmune Pharmacol 2013;8:791-806.
59. Constantinescu C, Gran B. The essential role of T cells in multiple sclerosis: a reappraisal. Biomed J 2014;37:34-40.
60. Weinstock JV. Substance P and the regulation of inflammation in infections and inflammatory bowel disease. Acta Physiol (Oxf) 2015;213:453-61.
61. Goode T, O'Connell J, Anton P, Wong H, Reeve J, O'Sullivan GC, et al. Neurokinin-1 receptor expression in inflammatory bowel disease: molecular quantitation and localisation. Gut 2000;47:387-96.
62. O'Connor TM, O'Connell J, O'Brien DI, Goode T, Bredin CP, Shanahan F. The role of substance P in inflammatory disease. J Cell Physiol 2004;201:167-80.
63. Vilisaar J, Kawabe K, Braitch M, Aram J, Furtun Y, Fahey AJ, et al. Reciprocal regulation of substance P and IL-12/IL-23 and the associated cytokines, IFNγ/IL-17: A perspective on the relevance of this interaction to multiple sclerosis. J Neuroimmune Pharmacol 2015;10:457-67.
64. Hertz L, McFarlin DE, Waksman BH. Astrocytes: auxiliary cells for immune responses in the central nervous system? Immunol Today 1990;11:265-8.
65. Compston A, Scolding N, Wren D, Noble M. The pathogenesis of demyelinating disease: insights from cell biology. Trends Neurosci 1991;14:175-82.
66. Reinke EK, Johnson MJ, Ling C, Karman J, Lee J, Weinstock JV, et al. Substance P receptor mediated maintenance of chronic inflammation in EAE. J Neuroimmunol 2006;180:117-25.
67. Kostyk S, Kowall N, Hauser S. Substance P immunoreactive astrocytes are present in multiple sclerosis plaques. Brain res 1989;504:284-8.
68. Rösler N, Reuner C, Geiger J, Rissler K, Cramer H. Cerebrospinal fluid levels of immunoreactive substance P and somatostatin in patients with multiple sclerosis and inflammatory CNS disease. Peptides 1990;11:181-3.
69. Thornton E, Vink R. Substance P and its tachykinin NK1 receptor: a novel neuroprotective target for Parkinson's disease. Neural Regen Res 2015;10:1403-5.
70. Raffa RB. Possible role(s) of neurokinins in CNS development and neurodegenerative or other disorders. Neurosci Biobehav Rev 1998;22:789-813.
71. Thornton E, Hassall MM, Corrigan F, Vink R. The NK1 receptor antagonist N-acetyl-l-tryptophan reduces dyskinesia in a hemi-parkinsonian rodent model. Parkinsonism Relat Disord 2014;20:508-13.
72. Cenci MA, Lindgren HS. Advances in understanding L-DOPA-induced dyskinesia. Curr Opin Neurobiol 2007;17:665-71.
73. Thornton E, Vink R. Treatment with a substance P receptor antagonist is neuroprotective in the intrastriatal 6-hydroxydopamine model of early Parkinson's disease. PLoS One 2012;7:e34138.
74. Nutt JG, Mroz EA, Leeman SE, Williams AC, Engel WK, Chase TN. Substance P in human cerebrospinal fluid Reductions in peripheral neuropathy and autonomic dysfunction. Neurology 1980;30:1280-5.
75. Pezzoli G, Panerai A, Di Giulio A, Longo A, Passerini D, Carenzi A. Methionine enkephalin, substance P, and homovanillic acid in the CSF of parkinsonian patients. Neurology 1984;34:516-9.
76. Cramer H, Jost S, Reuner C, Milios E, Geiger J, Mundinger F. Ventricular fluid neuropeptides in Parkinson's disease. II. Levels of substance P-like immunoreactivity. Neuropeptides 1991;18:69-73.
77. Cramer H, Rissler K, Rösler N, Strubel D, Schaudt D, Kuntzmann F. Immunoreactive substance P and somatostatin in the cerebrospinal fluid of senile parkinsonian patients. European neurology. 1989;29:1-5.
78. Chiba Y, Kawai K, Okuda Y, Munekata E, Yamashita K. Effects of Substance P and Substance P-(6–ll) on Hormone Release from Isolated Perfused Pancreas: Their Opposite Actions on Rat and Canine Islets. Endocrinology 1985;117:1996-2000.
79. Mauborgne A, Javoy-Agid F, Legrand J, Agid Y, Cesselin F. Decrease of substance P-like immunoreactivity in the substantia nigra and pallidum of parkinsonian brains. Brain res 1983;268:167-70.
80. Tenovuo O, Rinne U, Viljanen M. Substance P immunoreactivity in the postmortem parkinsonian brain. Brain res 1984;303:113-6.
81. Barker R. Substance P and Parkinson's disease: a causal relationship? J Theor Biol 1986;120:353-62.
82. Thornton E, Tran TT, Vink R. A substance P mediated pathway contributes to 6-hydroxydopamine induced cell death. Neuroscience lett 2010;481:64-7.
83. Emson P, Arregui A, Clement-Jones V, Sandberg B, Rossor M. Regional distribution of methionine-enkephalin and substance P-like immunoreactivity in normal human brain and in Huntington's disease. Brain res 1980;199:147-60.
84. Bird ED. Chemical pathology of Huntington's disease. Annu Rev Pharmacol Toxicol 1980;20:533-51.
85. Davies J, Dray A. Substance P in the substantia nigra. Brain Res 1976;107:623-7.
86. Kubota Y, Inagaki S, Kito S. Innervation of substance P neurons by catecholaminergic terminals in the neostriatum. Brain Res 1986;375:163-7.
87. Beal MF, Ellison DW, Mazurek MF, Swartz KJ, Malloy JR, Bird ED, et al. A detailed examination of substance P in pathologically graded cases of Huntington's disease. J Neurol Sci 1988;84:51-61.
88. Kanazawa I, Bird E, O'Connell R, Powell D. Evidence for a decrease in substance P content of substantia nigra in Huntington's chorea. Brain Res 1977;120:387-92.
89. Buck SH, Burks TF, Brown MR, Yamamura HI. Reduction in basal ganglia and substantia nigra substance P levels in Huntington's disease. Brain res 1981;209:464-9.
90. Gale J, Bird E, Spokes E, Iversen L, Jessell T. Human brain substance P: distribution in controls and Huntington's chorea. J Neurochem 1978;30:633-4.
91. Leigh PN, Ray-Chaudhuri K. Motor neuron disease. Neurol Neurosurg Psychiatry 1994;57:886-96.
92. Pasinelli P, Brown RH. Molecular biology of amyotrophic lateral sclerosis: insights from genetics. Nat Rev Neurosci 2006;7:710-23.
93. Gruzman A, Wood WL, Alpert E, Prasad MD, Miller RG, Rothstein JD, et al. Common molecular signature in SOD1 for both sporadic and familial amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 2007;104:12524-9.
94. Matsuishi T, Nagamitsu S, Shoji H, Itoh M, Takashima S, Iwaki T, et al. Increased cerebrospinal fluid levels of substance P in patients with amyotrophic lateral sclerosis. J Neural Transm 1999;106:943-8.
95. Dietl M, Sanchez M, Probst A, Palacios J. Substance P receptors in the human spinal cord: decrease in amyotrophic lateral sclerosis. Brain res 1989;483:39-49.
96. Gillberg PG, Aquilonius SM, Eckernas SA, Lundqvist G, Winblad B. Choline acetyltransferase and substance P-like immuno-reactivity in the human spinal cord: changes in amyotrophic lateral sclerosis. Brain Res 1982;250:394-7.
IssueVol 58, No 7 (2020) QRcode
SectionReview Article(s)
Tachykinins Tachykinin receptors Substance P Neurodegenerative disorders

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
Ghahremanloo A, Mohammadi F, Hashemy SI. The Role of Substance P in Neurodegenerative Diseases. Acta Med Iran. 2020;58(7):301-309.